Suppression of Neuronal Hyperexcitability and Associated Delayed Neuronal Death by Adenoviral Expression of GABACReceptors

The excessive neuronal excitation underlying several clinically important diseases is often treated with GABA allosteric modulators in an attempt to enhance inhibition. An alternative strategy would be to enhance directly the sensitivity of postsynaptic neurons to GABA. The GABA C receptor, normally...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience Vol. 21; no. 10; pp. 3419 - 3428
Main Authors: Cheng, Qing, Kulli, John C., Yang, Jay
Format: Journal Article
Language:English
Japanese
Published: Society for Neuroscience 15-05-2001
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The excessive neuronal excitation underlying several clinically important diseases is often treated with GABA allosteric modulators in an attempt to enhance inhibition. An alternative strategy would be to enhance directly the sensitivity of postsynaptic neurons to GABA. The GABA C receptor, normally found only in the retina, is more sensitive to GABA and demonstrates little desensitization compared with the GABA A receptor. We constructed an adenovirus vector that expressed cDNA for both the GABA C receptor ρ 1 subunit and a green fluorescent protein (GFP) reporter and used it to transduce cultured hippocampal neurons. Transduced neurons were identified by fluorescence, double immunocytochemistry proved colocalization of the ρ 1 protein and the reporter, Western blot verified the expected molecular masses, and electrophysiological and pharmacological properties confirmed the presence of functional GABA C receptors. ρ 1 -GFP transduction resulted in an increased density of GABA A receptors as well as expression of novel GABA C receptors. This effect was not reproduced by addition of TTX or Mg 2+ to the culture medium to reduce action potentials or synaptic activity. In a model of neuronal hyperexcitability induced by chronic blockade of glutamate receptors, expression of GABA C receptors abolished the hyperactivity and the consequent delayed neuronal death. Adenovirus-mediated neuronal GABA C receptor engineering, via its dual mechanism of inhibition, may offer a way of inhibiting only those hyperexcitable neurons responsible for clinical problems, avoiding the generalized nervous system depression associated with pharmacological therapy.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.21-10-03419.2001