Performance Evaluation of Classification Methods in Layout Prediction of Web Pages

The Web is an invaluable source of data stored on web pages. These data are contained in HTML layout elements of a web page. It is a crucial issue to extract data automatically from a web page. In this study, a dataset, which is annotated with seven different layouts including main content, headline...

Full description

Saved in:
Bibliographic Details
Published in:2018 International Conference on Artificial Intelligence and Data Processing (IDAP) pp. 1 - 7
Main Authors: Ozhan, Erkan, Uzun, Erdinc
Format: Conference Proceeding
Language:English
Published: IEEE 01-09-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Web is an invaluable source of data stored on web pages. These data are contained in HTML layout elements of a web page. It is a crucial issue to extract data automatically from a web page. In this study, a dataset, which is annotated with seven different layouts including main content, headline, summary, other necessary layouts, menu, link, and other unnecessary layouts, is used. Then, 49 different features are computed from these layouts. Finally, we compare the different classification methods for evaluating the performance of these methods in layout prediction. The experiments show that the Random Forest classifier achieves a high accuracy of 98.46%. Thanks to this classifier, the prediction of link layout has a higher performance (approximately 0.988 f-Measure) according to the performance of the prediction of other layouts. On the other hand, the prediction of the summary layout has the worst performance with about 0.882 f-Measure.
DOI:10.1109/IDAP.2018.8620893