Using microenvironments to identify allosteric binding sites
Protein amino acid residues can be classified by their chemical properties and data mining can be used to make predictions about their structure and function. However, the properties of the surrounding residues contribute to the overall chemical context. This paper defines microenvironments as the s...
Saved in:
Published in: | 2012 IEEE International Conference on Bioinformatics and Biomedicine pp. 1 - 5 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-10-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein amino acid residues can be classified by their chemical properties and data mining can be used to make predictions about their structure and function. However, the properties of the surrounding residues contribute to the overall chemical context. This paper defines microenvironments as the spherical volume around a point in space and uses these volumes to determine average properties of the encompassed residues. The approach to index generation rapidly constructs microenvironment data. The averaged chemical properties are then employed in allosteric site prediction using support vector machines and neural networks. The results show that index generation performs best when microenvironment radius matches the granularity of the index and that microenvironments improve the classification accuracy. |
---|---|
ISBN: | 9781467325592 1467325597 |
DOI: | 10.1109/BIBM.2012.6392711 |