Design of a systolic coprocessor for rational addition

We design a systolic coprocessor for the addition of signed normalized rational numbers. This is the most complicated rational operation: it involves GCD, exact division, multiplication and addition/subtraction. In particular the implementation of GCD and exact division improve significantly (2 to 4...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings The International Conference on Application Specific Array Processors pp. 282 - 289
Main Author: Jebelean, T.
Format: Conference Proceeding
Language:English
Published: IEEE 1995
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We design a systolic coprocessor for the addition of signed normalized rational numbers. This is the most complicated rational operation: it involves GCD, exact division, multiplication and addition/subtraction. In particular the implementation of GCD and exact division improve significantly (2 to 4 times) previously known solutions. In contrast to the traditional approach, all operations are performed least-significant digits first. This allows bit-pipelining between partial operations at reduced area-cost. An Atmel FPGA design for 8-bit operands consumes 730 cells (3,500 equivalent gates) and runs at 25 MHz (5 MHz after layout). For 32-bit operands this would be in the same timing range as the software solutions, however a significant speed-up can be expected for longer operands because the linear time-complexity of the hardware algorithms.
ISBN:9780818671098
0818671092
ISSN:1063-6862
DOI:10.1109/ASAP.1995.522932