In vitro screening of Fe2+-chelating effect by a Fenton's reaction-luminol chemiluminescence system
ABSTRACT In vitro screening of a Fe2+‐chelating effect using a Fenton's reaction–luminol chemiluminescence (CL) system is described. The luminescence between the reactive oxygen species generated by the Fenton's reaction and luminol was decreased on capturing Fe2+ using a chelator. The pro...
Saved in:
Published in: | Luminescence (Chichester, England) Vol. 29; no. 7; pp. 955 - 958 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Blackwell Publishing Ltd
01-11-2014
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
In vitro screening of a Fe2+‐chelating effect using a Fenton's reaction–luminol chemiluminescence (CL) system is described. The luminescence between the reactive oxygen species generated by the Fenton's reaction and luminol was decreased on capturing Fe2+ using a chelator. The proposed method can prevent the consumption of expensive seed compounds (drug discovery candidates) owing to the high sensitivity of CL detection. Therefore, the assay could be performed using small volumes of sample solution (150 μL) at micromolar concentrations. After optimization of the screening conditions, the efficacies of conventional chelators such as ethylenediaminetetraacetic acid (EDTA), diethylentriaminepentaacetic acid (DETAPAC), deferoxamine, deferiprone and 1,10‐phenanthroline were examined. EC50 values for these compounds (except 1,10‐phenanthroline) were in the range 3.20 ± 0.87 to 9.57 ± 0.64 μM (n = 3). Rapid measurement of the Fe2+‐chelating effect with an assay run time of a few minutes could be achieved using the proposed method. In addition, the specificity of the method was discussed. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
Bibliography: | ark:/67375/WNG-G2FJ1MDK-X ArticleID:BIO2628 istex:29A71252926E53A3CCE9CE5A972F3629E7BDF6B7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1522-7235 1522-7243 |
DOI: | 10.1002/bio.2628 |