A probabilistic interpretation of sampling theory of graph signals

We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise Gaussian random field (GRF) which depends on the graph. We show that, under certain conditions, reconstructing a graph signal from a subset of its...

Full description

Saved in:
Bibliographic Details
Published in:2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 3257 - 3261
Main Authors: Gadde, Akshay, Ortega, Antonio
Format: Conference Proceeding
Language:English
Published: IEEE 01-04-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise Gaussian random field (GRF) which depends on the graph. We show that, under certain conditions, reconstructing a graph signal from a subset of its samples by least squares is equivalent to performing MAP inference on an approximation of this GRF which has a low rank covariance matrix. We then show that a sampling set of given size with the largest associated cut-off frequency, which is optimal from a sampling theoretic point of view, minimizes the worst case predictive covariance of the MAP estimate on the GRF. This interpretation also gives an intuitive explanation for the superior performance of the sampling theoretic approach to active semi-supervised classification.
AbstractList We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise Gaussian random field (GRF) which depends on the graph. We show that, under certain conditions, reconstructing a graph signal from a subset of its samples by least squares is equivalent to performing MAP inference on an approximation of this GRF which has a low rank covariance matrix. We then show that a sampling set of given size with the largest associated cut-off frequency, which is optimal from a sampling theoretic point of view, minimizes the worst case predictive covariance of the MAP estimate on the GRF. This interpretation also gives an intuitive explanation for the superior performance of the sampling theoretic approach to active semi-supervised classification.
Author Gadde, Akshay
Ortega, Antonio
Author_xml – sequence: 1
  givenname: Akshay
  surname: Gadde
  fullname: Gadde, Akshay
  email: agadde@usc.edu
  organization: Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA
– sequence: 2
  givenname: Antonio
  surname: Ortega
  fullname: Ortega, Antonio
  email: ortega@sipi.usc.edu
  organization: Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA
BookMark eNotj81Kw0AURkepYFr7BN3MCyTOnZ_czLIWrUJBoQruyp1kko6kSZhk07e3YlcHvsXhO3M26_rOM7YCkQEI-_i2We_3H5kUYDIELAyqGzYHnaPKrUW8ZYlUaFOw4nvGEjBSpDloe8-W4_gjhADMUaNO2NOaD7F35EIbximUPHSTj0P0E02h73hf85FOQxu6hk9H38fz39REGo58DE1H7fjA7uoL_PLKBft6ef7cvKa79-3l6C4NEvWUanIKa_LaKqGVc5UopDamMqoW0iqtJYiKSrAOakmeyEhbQlkXkrCyslILtvr3Bu_9YYjhRPF8uOarX70NTzo
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2015.7178573
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1467369977
9781467369978
EISSN 2379-190X
EndPage 3261
ExternalDocumentID 7178573
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i274t-4ab37fae493043bbd082455d53f029344210dac19b1f2aeaa529c1cf82a7d92d3
IEDL.DBID RIE
ISSN 1520-6149
IngestDate Wed Jun 26 19:20:33 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-4ab37fae493043bbd082455d53f029344210dac19b1f2aeaa529c1cf82a7d92d3
PageCount 5
ParticipantIDs ieee_primary_7178573
PublicationCentury 2000
PublicationDate 20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 20150401
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
PublicationTitleAbbrev ICASSP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001767474
ssj0008748
Score 2.278919
Snippet We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise...
SourceID ieee
SourceType Publisher
StartPage 3257
SubjectTerms Active learning
Bandwidth
Covariance matrices
Cutoff frequency
Eigenvalues and eigenfunctions
Estimation
Frequency estimation
Gaussian Markov random field
Graph Signal Processing
Probabilistic logic
Sampling theorem
Semi-supervised learning
Title A probabilistic interpretation of sampling theory of graph signals
URI https://ieeexplore.ieee.org/document/7178573
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RTnrxA4zf6cGjg21t1_aICMGLIUETb6RdW8NlGGEH_3v7ygKSePG2dMmy_Nbs9bW_D4D7QlrKmUA1TsoSpnOTGO7zJC20TrkuqClQKDyZiZd3-TRCm5yHrRbGORfJZ66Hl_Es3y7LGrfK-gKj5AVtQUsoudFq7fZT0JUGlzLNX1iKmJwVyhO2R0w1jkNZqvrPw8FsNkVaF-81j9zLVomlZXz8v5c6ge5Oo0em2-pzCgeuOoOjX_aCHXgcEMyLiR66aMdMFnsMQ7L0ZKWRUV59kCho_MahaGFNkNcRZmYX3saj1-EkaTITkkXoL9cBbUOF146pgD01xoYSzzi3nPo0VHbGQotndZkpk_lcO615rsqs9DLXwqrc0nNoV8vKXQDh3KWlC0tEg2eTXqhwn5uC09wyI6W5hA6iMf_c2GLMGyCu_h6-hkMEfEN6uYH2-qt2t9Ba2foufsgfjSWa5Q
link.rule.ids 310,311,782,786,791,792,798,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGP0ieFAv_gDjb3vw6KBb23U7IkIgIiEBE2-kXTvDZRiBg_-9_coCknjxtnRJs7wte_3a994H8BAnhgku0Y1DecBVpAMt8iigsVJUqJjpGI3CvbEcvifPHYzJedx4Yay1XnxmG3jpz_LNPFvhVllTYit5ySqw76aXdO3W2u6oYC4NLmbK_3Aife8sR1BYIPG0zBwKadrst1vj8QiFXaJRTrrTXcWTS_f4f491AvWtS4-MNvxzCnu2OIOjXwGDNXhqEewY41N0MZCZzHY0hmSek4VCTXnxQbyl8RuHfIg1QWWH-zbr8NbtTNq9oOyaEMxchbl0eGsmc2V56tBnWhtH8lwII1hOHbdz7oo8o7Iw1WEeKauUiNIszPIkUtKkkWHnUC3mhb0AIoSlmXWLRI2nk7lM3X2hY8Eiw3WS6EuoIRrTz3UwxrQE4urv4Xs46E1eB9NBf_hyDYcI_loCcwPV5dfK3kJlYVZ3_qX-AN3vnjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=A+probabilistic+interpretation+of+sampling+theory+of+graph+signals&rft.au=Gadde%2C+Akshay&rft.au=Ortega%2C+Antonio&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1520-6149&rft.eissn=2379-190X&rft.spage=3257&rft.epage=3261&rft_id=info:doi/10.1109%2FICASSP.2015.7178573&rft.externalDocID=7178573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon