A probabilistic interpretation of sampling theory of graph signals
We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise Gaussian random field (GRF) which depends on the graph. We show that, under certain conditions, reconstructing a graph signal from a subset of its...
Saved in:
Published in: | 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 3257 - 3261 |
---|---|
Main Authors: | , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-04-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise Gaussian random field (GRF) which depends on the graph. We show that, under certain conditions, reconstructing a graph signal from a subset of its samples by least squares is equivalent to performing MAP inference on an approximation of this GRF which has a low rank covariance matrix. We then show that a sampling set of given size with the largest associated cut-off frequency, which is optimal from a sampling theoretic point of view, minimizes the worst case predictive covariance of the MAP estimate on the GRF. This interpretation also gives an intuitive explanation for the superior performance of the sampling theoretic approach to active semi-supervised classification. |
---|---|
AbstractList | We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise Gaussian random field (GRF) which depends on the graph. We show that, under certain conditions, reconstructing a graph signal from a subset of its samples by least squares is equivalent to performing MAP inference on an approximation of this GRF which has a low rank covariance matrix. We then show that a sampling set of given size with the largest associated cut-off frequency, which is optimal from a sampling theoretic point of view, minimizes the worst case predictive covariance of the MAP estimate on the GRF. This interpretation also gives an intuitive explanation for the superior performance of the sampling theoretic approach to active semi-supervised classification. |
Author | Gadde, Akshay Ortega, Antonio |
Author_xml | – sequence: 1 givenname: Akshay surname: Gadde fullname: Gadde, Akshay email: agadde@usc.edu organization: Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA – sequence: 2 givenname: Antonio surname: Ortega fullname: Ortega, Antonio email: ortega@sipi.usc.edu organization: Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA |
BookMark | eNotj81Kw0AURkepYFr7BN3MCyTOnZ_czLIWrUJBoQruyp1kko6kSZhk07e3YlcHvsXhO3M26_rOM7YCkQEI-_i2We_3H5kUYDIELAyqGzYHnaPKrUW8ZYlUaFOw4nvGEjBSpDloe8-W4_gjhADMUaNO2NOaD7F35EIbximUPHSTj0P0E02h73hf85FOQxu6hk9H38fz39REGo58DE1H7fjA7uoL_PLKBft6ef7cvKa79-3l6C4NEvWUanIKa_LaKqGVc5UopDamMqoW0iqtJYiKSrAOakmeyEhbQlkXkrCyslILtvr3Bu_9YYjhRPF8uOarX70NTzo |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP.2015.7178573 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1467369977 9781467369978 |
EISSN | 2379-190X |
EndPage | 3261 |
ExternalDocumentID | 7178573 |
Genre | orig-research |
GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i274t-4ab37fae493043bbd082455d53f029344210dac19b1f2aeaa529c1cf82a7d92d3 |
IEDL.DBID | RIE |
ISSN | 1520-6149 |
IngestDate | Wed Jun 26 19:20:33 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i274t-4ab37fae493043bbd082455d53f029344210dac19b1f2aeaa529c1cf82a7d92d3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7178573 |
PublicationCentury | 2000 |
PublicationDate | 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 20150401 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001767474 ssj0008748 |
Score | 2.278919 |
Snippet | We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3257 |
SubjectTerms | Active learning Bandwidth Covariance matrices Cutoff frequency Eigenvalues and eigenfunctions Estimation Frequency estimation Gaussian Markov random field Graph Signal Processing Probabilistic logic Sampling theorem Semi-supervised learning |
Title | A probabilistic interpretation of sampling theory of graph signals |
URI | https://ieeexplore.ieee.org/document/7178573 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RTnrxA4zf6cGjg21t1_aICMGLIUETb6RdW8NlGGEH_3v7ygKSePG2dMmy_Nbs9bW_D4D7QlrKmUA1TsoSpnOTGO7zJC20TrkuqClQKDyZiZd3-TRCm5yHrRbGORfJZ66Hl_Es3y7LGrfK-gKj5AVtQUsoudFq7fZT0JUGlzLNX1iKmJwVyhO2R0w1jkNZqvrPw8FsNkVaF-81j9zLVomlZXz8v5c6ge5Oo0em2-pzCgeuOoOjX_aCHXgcEMyLiR66aMdMFnsMQ7L0ZKWRUV59kCho_MahaGFNkNcRZmYX3saj1-EkaTITkkXoL9cBbUOF146pgD01xoYSzzi3nPo0VHbGQotndZkpk_lcO615rsqs9DLXwqrc0nNoV8vKXQDh3KWlC0tEg2eTXqhwn5uC09wyI6W5hA6iMf_c2GLMGyCu_h6-hkMEfEN6uYH2-qt2t9Ba2foufsgfjSWa5Q |
link.rule.ids | 310,311,782,786,791,792,798,27936,54770 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGP0ieFAv_gDjb3vw6KBb23U7IkIgIiEBE2-kXTvDZRiBg_-9_coCknjxtnRJs7wte_3a994H8BAnhgku0Y1DecBVpAMt8iigsVJUqJjpGI3CvbEcvifPHYzJedx4Yay1XnxmG3jpz_LNPFvhVllTYit5ySqw76aXdO3W2u6oYC4NLmbK_3Aife8sR1BYIPG0zBwKadrst1vj8QiFXaJRTrrTXcWTS_f4f491AvWtS4-MNvxzCnu2OIOjXwGDNXhqEewY41N0MZCZzHY0hmSek4VCTXnxQbyl8RuHfIg1QWWH-zbr8NbtTNq9oOyaEMxchbl0eGsmc2V56tBnWhtH8lwII1hOHbdz7oo8o7Iw1WEeKauUiNIszPIkUtKkkWHnUC3mhb0AIoSlmXWLRI2nk7lM3X2hY8Eiw3WS6EuoIRrTz3UwxrQE4urv4Xs46E1eB9NBf_hyDYcI_loCcwPV5dfK3kJlYVZ3_qX-AN3vnjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=A+probabilistic+interpretation+of+sampling+theory+of+graph+signals&rft.au=Gadde%2C+Akshay&rft.au=Ortega%2C+Antonio&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1520-6149&rft.eissn=2379-190X&rft.spage=3257&rft.epage=3261&rft_id=info:doi/10.1109%2FICASSP.2015.7178573&rft.externalDocID=7178573 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon |