A probabilistic interpretation of sampling theory of graph signals

We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise Gaussian random field (GRF) which depends on the graph. We show that, under certain conditions, reconstructing a graph signal from a subset of its...

Full description

Saved in:
Bibliographic Details
Published in:2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 3257 - 3261
Main Authors: Gadde, Akshay, Ortega, Antonio
Format: Conference Proceeding
Language:English
Published: IEEE 01-04-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise Gaussian random field (GRF) which depends on the graph. We show that, under certain conditions, reconstructing a graph signal from a subset of its samples by least squares is equivalent to performing MAP inference on an approximation of this GRF which has a low rank covariance matrix. We then show that a sampling set of given size with the largest associated cut-off frequency, which is optimal from a sampling theoretic point of view, minimizes the worst case predictive covariance of the MAP estimate on the GRF. This interpretation also gives an intuitive explanation for the superior performance of the sampling theoretic approach to active semi-supervised classification.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2015.7178573