Gallium-Indium Ordering in the Complex [Ni2Ga3In] Network of GdNi2Ga3In
Polycrystalline samples of the isotypic quaternary compounds RENi2Ga3In (RE = Y, Gd – Tm) were obtained by arc‐melting of the elements. Crystals of the gadolinium compound were found by slow cooling of an arc‐melted button of the initial composition “GdNiGa3In”. All samples were characterized by pow...
Saved in:
Published in: | Zeitschrift für anorganische und allgemeine Chemie (1950) Vol. 642; no. 16; pp. 896 - 901 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
01-08-2016
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polycrystalline samples of the isotypic quaternary compounds RENi2Ga3In (RE = Y, Gd – Tm) were obtained by arc‐melting of the elements. Crystals of the gadolinium compound were found by slow cooling of an arc‐melted button of the initial composition “GdNiGa3In”. All samples were characterized by powder X‐ray diffraction. The structure of GdNi2Ga2.89In1.11 was refined from single‐crystal X‐ray diffractometer data: new type, Pnma, a = 2426.38(7), b = 418.17(2), c = 927.27(3) pm, wR2 = 0.0430, 1610 F2 values and 88 variables. Two of the six crystallographically independent gallium sites show a small degree of Ga/In mixing. The nickel atoms show tricapped trigonal prismatic coordination by gadolinium, gallium, and indium. Together, the nickel, gallium, and indium atoms build up a complex three‐dimensional [Ni2Ga3In]δ– network, which leaves cages for the gadolinium atoms. The indium atoms form zigzag chains with In–In distances of 337 pm. The crystal chemical similarities of the polyhedral packing in the GdNi2Ga3In and La4Pd10In21 structures are discussed. |
---|---|
Bibliography: | ArticleID:ZAAC201600228 istex:D98D76BC11E45C0A217F9859AEAE2867454476EC ark:/67375/WNG-XSLQW932-S |
ISSN: | 0044-2313 1521-3749 |
DOI: | 10.1002/zaac.201600228 |