Imitation Learning for Human Pose Prediction

Modeling and prediction of human motion dynamics has long been a challenging problem in computer vision, and most existing methods rely on the end-to-end supervised training of various architectures of recurrent neural networks. Inspired by the recent success of deep reinforcement learning methods,...

Full description

Saved in:
Bibliographic Details
Published in:2019 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 7123 - 7132
Main Authors: Wang, Borui, Adeli, Ehsan, Chiu, Hsu-Kuang, Huang, De-An, Niebles, Juan Carlos
Format: Conference Proceeding
Language:English
Published: IEEE 01-10-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modeling and prediction of human motion dynamics has long been a challenging problem in computer vision, and most existing methods rely on the end-to-end supervised training of various architectures of recurrent neural networks. Inspired by the recent success of deep reinforcement learning methods, in this paper we propose a new reinforcement learning formulation for the problem of human pose prediction, and develop an imitation learning algorithm for predicting future poses under this formulation through a combination of behavioral cloning and generative adversarial imitation learning. Our experiments show that our proposed method outperforms all existing state-of-the-art baseline models by large margins on the task of human pose prediction in both short-term predictions and long-term predictions, while also enjoying huge advantage in training speed.
ISSN:2380-7504
DOI:10.1109/ICCV.2019.00722