Monocular Real-time Full Body Capture with Inter-part Correlations

We present the first method for real-time full body capture that estimates shape and motion of body and hands together with a dynamic 3D face model from a single color image. Our approach uses a new neural network architecture that exploits correlations between body and hands at high computational e...

Full description

Saved in:
Bibliographic Details
Published in:2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4809 - 4820
Main Authors: Zhou, Yuxiao, Habermann, Marc, Habibie, Ikhsanul, Tewari, Ayush, Theobalt, Christian, Xu, Feng
Format: Conference Proceeding
Language:English
Published: IEEE 01-06-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the first method for real-time full body capture that estimates shape and motion of body and hands together with a dynamic 3D face model from a single color image. Our approach uses a new neural network architecture that exploits correlations between body and hands at high computational efficiency. Unlike previous works, our approach is jointly trained on multiple datasets focusing on hand, body or face separately, without requiring data where all the parts are annotated at the same time, which is much more difficult to create at sufficient variety. The possibility of such multi-dataset training enables superior generalization ability. In contrast to earlier monocular full body methods, our approach captures more expressive 3D face geometry and color by estimating the shape, expression, albedo and illumination parameters of a statistical face model. Our method achieves competitive accuracy on public benchmarks, while being significantly faster and providing more complete face reconstructions.
ISSN:2575-7075
DOI:10.1109/CVPR46437.2021.00478