Multi-view representation learning via gcca for multimodal analysis of Parkinson's disease
Information from different bio-signals such as speech, handwriting, and gait have been used to monitor the state of Parkinson's disease (PD) patients, however, all the multimodal bio-signals may not always be available. We propose a method based on multi-view representation learning via general...
Saved in:
Published in: | 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 2966 - 2970 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-03-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Information from different bio-signals such as speech, handwriting, and gait have been used to monitor the state of Parkinson's disease (PD) patients, however, all the multimodal bio-signals may not always be available. We propose a method based on multi-view representation learning via generalized canonical correlation analysis (GCCA) for learning a representation of features extracted from handwriting and gait that can be used as a complement to speech-based features. Three different problems are addressed: classification of PD patients vs. healthy controls, prediction of the neurological state of PD patients according to the UPDRS score, and the prediction of a modified version of the Frenchay dysarthria assessment (m-FDA). According to the results, the proposed approach is suitable to improve the results in the addressed problems, specially in the prediction of the UPDRS, and m-FDA scores. |
---|---|
ISSN: | 2379-190X |
DOI: | 10.1109/ICASSP.2017.7952700 |