Multi-granular Arithmetic in a Coarse-Grain Reconfigurable Architecture
Mismatch between operand width and hardware operation width is a source of energy inefficiency. This work proposes multi-granular arithmetic, which can adapt the hardware operation width to the application, preventing energy being wasted. In particular multi-granular arithmetic in the context of coa...
Saved in:
Published in: | 2016 Euromicro Conference on Digital System Design (DSD) pp. 599 - 606 |
---|---|
Main Authors: | , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-08-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mismatch between operand width and hardware operation width is a source of energy inefficiency. This work proposes multi-granular arithmetic, which can adapt the hardware operation width to the application, preventing energy being wasted. In particular multi-granular arithmetic in the context of coarse-grain reconfigurable architectures is considered for the operations of addition, accumulation, multiplication, and multiply-accumulation. Using a silicon synthesis-toolflow it is shown that the multi-granular designs can perform narrow width operations, e.g. an 8-by-8 multiplication, much more efficiently than standard full-width circuits. For multiplication the required energy is reduced by up to 15 times under realistic conditions when compared to a full-width 32x32 multiplier. |
---|---|
DOI: | 10.1109/DSD.2016.98 |