Balanced Binary Neural Networks with Gated Residual

Binary neural networks have attracted numerous attention in recent years. However, mainly due to the information loss stemming from the biased binarization, how to preserve the accuracy of networks still remains a critical issue. In this paper, we attempt to maintain the information propagated in th...

Full description

Saved in:
Bibliographic Details
Published in:ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 4197 - 4201
Main Authors: Shen, Mingzhu, Liu, Xianglong, Gong, Ruihao, Han, Kai
Format: Conference Proceeding
Language:English
Published: IEEE 01-05-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Binary neural networks have attracted numerous attention in recent years. However, mainly due to the information loss stemming from the biased binarization, how to preserve the accuracy of networks still remains a critical issue. In this paper, we attempt to maintain the information propagated in the forward process and propose a Balanced Binary Neural Networks with Gated Residual (BBG for short). First, a weight balanced binarization is introduced and thus the informative binary weights can capture more information contained in the activations. Second, for binary activations, a gated residual is further appended to compensate their information loss during the forward process, with a slight overhead. Both techniques can be wrapped as a generic network module that supports various network architectures for different tasks including classification and detection. The experimental results show that BBG-Net performs remarkably well across various network architectures such as VGG, ResNet and SSD with the superior performance over state-of-the-art methods.
ISSN:2379-190X
DOI:10.1109/ICASSP40776.2020.9054599