Comparative Study of Different Passivity-Based Non-linear Control of DC-DC Boost Converter

The DC-DC boost converter has a non-linear characteristic and the control-to-output transfer function of the linearised model exhibits a non-minimum phase system with a right-half-plane (RHP) zero. The consequence of this zero is a sluggish response of the converter and it's difficult to design...

Full description

Saved in:
Bibliographic Details
Published in:2019 Innovations in Power and Advanced Computing Technologies (i-PACT) Vol. 1; pp. 1 - 7
Main Authors: Gandhi, Mitesh R., Rathore, Sandhya
Format: Conference Proceeding
Language:English
Published: IEEE 01-03-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The DC-DC boost converter has a non-linear characteristic and the control-to-output transfer function of the linearised model exhibits a non-minimum phase system with a right-half-plane (RHP) zero. The consequence of this zero is a sluggish response of the converter and it's difficult to design a controller that is robust against load variation. In this work, we present a non-linear passivity-based control (PBC) algorithm to regulate the output voltage of the DC-DC boost converter. This controller works on the principle of an `energy shaping plus damping injection', which is obtained from non-linear dynamical feedback. The non-linear DC-DC boost converter is modeled by using Euler-Lagrange, Port-controlled Hamiltonian and Brayton-Moser equations. These different classical mechanics based controller's design and their simulation results of input-output variables are compared under reference step changes and load perturbations in MATLAB/Simulink.
DOI:10.1109/i-PACT44901.2019.8960007