Membrane Supported GaN CPW Structures for High-frequency and High-power Applications
High performance coplanar waveguides (CPWs) on GaN membrane technology for AlGaN/GaN high electron mobility transistors (HEMTs) grown on low-resistivity (LR) Si substrates have been demonstrated in this work. The developed CPW technology shows a remarkable improvement in RF losses when the lossy Si...
Saved in:
Published in: | 2019 IEEE Asia-Pacific Microwave Conference (APMC) pp. 1179 - 1181 |
---|---|
Main Authors: | , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-12-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High performance coplanar waveguides (CPWs) on GaN membrane technology for AlGaN/GaN high electron mobility transistors (HEMTs) grown on low-resistivity (LR) Si substrates have been demonstrated in this work. The developed CPW technology shows a remarkable improvement in RF losses when the lossy Si beneath CPW structures is removed, resulting in comparable RF performance to that of CPW realized on high-resistivity (HR) Si and semi-insulating (SI) SiC substrates, with similar AlGaN/GaN top epitaxial layers. Experimental results, first to be reported, demonstrate transmission losses ( S21) of 0.47 dB and Q-factor of 20.77 for the CPW on GaN membrane technology, compared to S21 of 2.95 dB and Q-factor of 4.51 for the CPW on GaN-on-LR Si, at 40 GHz. Furthermore, the influence of substrate parasitics on RF performance of CPW on GaN-based HEMTs grown on various substrates was studied and analyzed by the extraction of transmission line parameters for frequencies up to 40 GHz. These findings offer viable integrated GaN-based HEMTs on LR Si technology suitable for high-power and high-temperature system applications at RF and millimeter-wave frequencies, when used in conjunction with high thermal coefficient materials such as diamond and AIN. |
---|---|
DOI: | 10.1109/APMC46564.2019.9038731 |