Anna: A KVS for Any Scale

Modern cloud providers offer dense hardware with multiple cores and large memories, hosted in global platforms. This raises the challenge of implementing high-performance software systems that can effectively scale from a single core to multicore to the globe. Conventional wisdom says that software...

Full description

Saved in:
Bibliographic Details
Published in:2018 IEEE 34th International Conference on Data Engineering (ICDE) pp. 401 - 412
Main Authors: Chenggang Wu, Faleiro, Jose, Yihan Lin, Hellerstein, Joseph
Format: Conference Proceeding
Language:English
Published: IEEE 01-04-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modern cloud providers offer dense hardware with multiple cores and large memories, hosted in global platforms. This raises the challenge of implementing high-performance software systems that can effectively scale from a single core to multicore to the globe. Conventional wisdom says that software designed for one scale point needs to be rewritten when scaling up by 10-100X. In contrast, we explore how a system can be architected to scale across many orders of magnitude by design. We explore this challenge in the context of a new key-value store system called Anna: a partitioned, multi-mastered system that achieves high performance and elasticity via wait-free execution and coordination-free consistency. Our design rests on a simple architecture of coordination-free actors that perform state update via merge of lattice-based composite data structures. We demonstrate that a wide variety of consistency models can be elegantly implemented in this architecture with unprecedented consistency, smooth fine-grained elasticity, and performance that far exceeds the state of the art.
ISSN:2375-026X
DOI:10.1109/ICDE.2018.00044