Anna: A KVS for Any Scale
Modern cloud providers offer dense hardware with multiple cores and large memories, hosted in global platforms. This raises the challenge of implementing high-performance software systems that can effectively scale from a single core to multicore to the globe. Conventional wisdom says that software...
Saved in:
Published in: | 2018 IEEE 34th International Conference on Data Engineering (ICDE) pp. 401 - 412 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-04-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modern cloud providers offer dense hardware with multiple cores and large memories, hosted in global platforms. This raises the challenge of implementing high-performance software systems that can effectively scale from a single core to multicore to the globe. Conventional wisdom says that software designed for one scale point needs to be rewritten when scaling up by 10-100X. In contrast, we explore how a system can be architected to scale across many orders of magnitude by design. We explore this challenge in the context of a new key-value store system called Anna: a partitioned, multi-mastered system that achieves high performance and elasticity via wait-free execution and coordination-free consistency. Our design rests on a simple architecture of coordination-free actors that perform state update via merge of lattice-based composite data structures. We demonstrate that a wide variety of consistency models can be elegantly implemented in this architecture with unprecedented consistency, smooth fine-grained elasticity, and performance that far exceeds the state of the art. |
---|---|
ISSN: | 2375-026X |
DOI: | 10.1109/ICDE.2018.00044 |