Hierarchical non-singular terminal sliding mode controller for a single link flexible joint robot manipulator

This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the co...

Full description

Saved in:
Bibliographic Details
Published in:2017 IEEE 56th Annual Conference on Decision and Control (CDC) pp. 6677 - 6682
Main Authors: Rsetam, Kamal, Zhenwei Cao, Zhihong Man
Format: Conference Proceeding
Language:English
Published: IEEE 01-12-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on the modeling dynamics, the system is decomposed hierarchically into two-second order subsystems, namely, a rigid body and a flexible subsystem. In the first level, the sliding manifold for each subsystem is designed based on the NTS surfaces. Then, in the second level, the total sliding surface is constructed as the linear combination of NTS surfaces of two subsystems. Thereafter, a HNTSM control is obtained based on Lyapunov theorem to drive both subsystems to their equilibrium points in the finite time. Simulation results demonstrate the effectiveness of proposed scheme (HNTSMC) over (HCSMC).
DOI:10.1109/CDC.2017.8264665