Deep Co-occurrence Feature Learning for Visual Object Recognition

This paper addresses three issues in integrating part-based representations into convolutional neural networks (CNNs) for object recognition. First, most part-based models rely on a few pre-specified object parts. However, the optimal object parts for recognition often vary from category to category...

Full description

Saved in:
Bibliographic Details
Published in:2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 7302 - 7311
Main Authors: Ya-Fang Shih, Yang-Ming Yeh, Yen-Yu Lin, Ming-Fang Weng, Yi-Chang Lu, Yung-Yu Chuang
Format: Conference Proceeding
Language:English
Published: IEEE 01-07-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses three issues in integrating part-based representations into convolutional neural networks (CNNs) for object recognition. First, most part-based models rely on a few pre-specified object parts. However, the optimal object parts for recognition often vary from category to category. Second, acquiring training data with part-level annotation is labor-intensive. Third, modeling spatial relationships between parts in CNNs often involves an exhaustive search of part templates over multiple network streams. We tackle the three issues by introducing a new network layer, called co-occurrence layer. It can extend a convolutional layer to encode the co-occurrence between the visual parts detected by the numerous neurons, instead of a few pre-specified parts. To this end, the feature maps serve as both filters and images, and mutual correlation filtering is conducted between them. The co-occurrence layer is end-to-end trainable. The resultant co-occurrence features are rotation-and translation-invariant, and are robust to object deformation. By applying this new layer to the VGG-16 and ResNet-152, we achieve the recognition rates of 83.6% and 85.8% on the Caltech-UCSD bird benchmark, respectively. The source code is available at https://github.com/yafangshih/Deep-COOC.
ISSN:1063-6919
DOI:10.1109/CVPR.2017.772