Extracting Syntactical Patterns from Databases

Many database columns contain string or numerical data that conforms to a pattern, such as phone numbers, dates, addresses, product identifiers, and employee ids. These patterns are useful in a number of data processing applications, including understanding what a specific field represents when fiel...

Full description

Saved in:
Bibliographic Details
Published in:2018 IEEE 34th International Conference on Data Engineering (ICDE) pp. 41 - 52
Main Authors: Ilyas, Andrew, da Trindade, Joana M. F., Castro Fernandez, Raul, Madden, Samuel
Format: Conference Proceeding
Language:English
Published: IEEE 01-04-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many database columns contain string or numerical data that conforms to a pattern, such as phone numbers, dates, addresses, product identifiers, and employee ids. These patterns are useful in a number of data processing applications, including understanding what a specific field represents when field names are ambiguous, identifying outlier values, and finding similar fields across data sets.One way to express such patterns would be to learn regular expressions for each field in the database. Unfortunately, existing techniques on regular expression learning are slow, taking hundreds of seconds for columns of just a few thousand values. In contrast, we develop XSYSTEM, an efficient method to learn patterns over database columns in significantly less time.We show that these patterns can not only be built quickly, but are expressive enough to capture a number of key applications, including detecting outliers, measuring column similarity, and assigning semantic labels to columns (based on a library of regular expressions). We evaluate these applications with datasets that range from chemical databases (based on a collaboration with a pharmaceutical company), our university data warehouse, and open data from MassData.gov.
ISSN:2375-026X
DOI:10.1109/ICDE.2018.00014