Applying the scientific method to cybersecurity research

The cyber environment has rapidly evolved from a curiosity to an essential component of the contemporary world. As the cyber environment has expanded and become more complex, so have the nature of adversaries and styles of attacks. Today, cyber incidents are an expected part of life. As a result, cy...

Full description

Saved in:
Bibliographic Details
Published in:2016 IEEE Symposium on Technologies for Homeland Security (HST) pp. 1 - 8
Main Authors: Tardiff, Mark F., Bonheyo, George T., Cort, Katherine A., Edgar, Thomas W., Hess, Nancy J., Hutton, William J., Miller, Erin A., Nowak, Kathleen E., Oehmen, Christopher S., Purvine, Emilie A. H., Schenter, Gregory K., Whitney, Paul D.
Format: Conference Proceeding
Language:English
Published: IEEE 01-05-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cyber environment has rapidly evolved from a curiosity to an essential component of the contemporary world. As the cyber environment has expanded and become more complex, so have the nature of adversaries and styles of attacks. Today, cyber incidents are an expected part of life. As a result, cybersecurity research emerged to address adversarial attacks interfering with or preventing normal cyber activities. Historical response to cybersecurity attacks is heavily skewed to tactical responses with an emphasis on rapid recovery. While threat mitigation is important and can be time critical, a knowledge gap exists with respect to developing the science of cybersecurity. Such a science will enable the development and testing of theories that lead to understanding the broad sweep of cyber threats and the ability to assess trade-offs in sustaining network missions while mitigating attacks. The Asymmetric Resilient Cybersecurity Initiative at Pacific Northwest National Laboratory is a multi-year, multi-million dollar investment to develop approaches for shifting the advantage to the defender and sustaining the operability of systems under attack. The initiative established a Science Council to focus attention on the research process for cybersecurity. The Council shares science practices, critiques research plans, and aids in documenting and reporting reproducible research results. The Council members represent ecology, economics, statistics, physics, computational chemistry, microbiology and genetics, and geochemistry. This paper reports the initial work of the Science Council to implement the scientific method in cybersecurity research. The second section describes the scientific method. The third section in this paper discusses scientific practices for cybersecurity research. Section four describes initial impacts of applying the science practices to cybersecurity research.
DOI:10.1109/THS.2016.7568886