Fusicoccin, 14-3-3 Proteins, and Defense Responses in Tomato Plants
Fusicoccin (FC) is a fungal toxin that activates the plant plasma membrane H+-ATPase by binding with 14-3-3 proteins, causing membrane hyperpolarization. Here we report on the effect of FC on a gene-for-gene pathogen-resistance response and show that FC application induces the expression of several...
Saved in:
Published in: | Plant physiology (Bethesda) Vol. 119; no. 4; pp. 1243 - 1250 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Rockville, MD
American Society of Plant Physiologists
01-04-1999
American Society of Plant Biologists |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fusicoccin (FC) is a fungal toxin that activates the plant plasma membrane H+-ATPase by binding with 14-3-3 proteins, causing membrane hyperpolarization. Here we report on the effect of FC on a gene-for-gene pathogen-resistance response and show that FC application induces the expression of several genes involved in plant responses to pathogens. Ten members of the FC-binding 14-3-3 protein gene family were isolated from tomato (Lycopersicon esculentum) to characterize their role in defense responses. Sequence analysis is suggestive of common biochemical functions for these tomato 14-3-3 proteins, but their genes showed different expression patterns in leaves after challenges. Different specific subsets of 14-3-3 genes were induced after treatment with FC and during a gene-for-gene resistance response. Possible roles for the H+-ATPase and 14-3-3 proteins in responses to pathogens are discussed. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.119.4.1243 |