1,25(OH)2-vitamin D3 receptors: gene regulation and genetic circuitry

Our understanding of how vitamin D mediates biological responses has entered a new era. It is now clear that the bulk of the biological responses supported by vitamin D occur as a consequence of its metabolism to its daughter metabolite 1 alpha,25-dihydroxyvitamin D3 (a steroid hormone). The fact th...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal Vol. 2; no. 15; p. 3043
Main Authors: Minghetti, P P, Norman, A W
Format: Journal Article
Language:English
Published: United States 01-12-1988
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our understanding of how vitamin D mediates biological responses has entered a new era. It is now clear that the bulk of the biological responses supported by vitamin D occur as a consequence of its metabolism to its daughter metabolite 1 alpha,25-dihydroxyvitamin D3 (a steroid hormone). The fact that 1,25(OH)2D3 receptors are ubiquitous in tissue distribution opens the possibility for unforeseen biological functions of the vitamin D endocrine system. For example, 1,25(OH)2D3 serves as an immunoregulatory hormone and a differentiation hormone besides its classical role in mineral homeostasis. The avian 1,25)OH)2D3 receptor has recently been cloned and shown to be a member of the nuclear transacting receptor family that includes estrogen, progesterone, glucocorticoid, thyroxine (T3), aldosterone, and retinoic acid receptors. We have compiled an extensive number of RNA polymerase II-transcribed genes that are regulated by 1,25(OH)2D3. Classification of these genes on functional grounds identifies and formulates the several genetic circuits or biochemical systems in which 1,25(OH)2D3 plays an essential regulatory role. These systems include genes that govern oncogene and lymphokine expression as well as those involved in mineral homeostasis, vitamin D metabolism, and regulation of a set of replication-linked genes (c-myc, c-myb, and histone H4), which are critical for rapid cellular proliferation. An integrated analysis of the combinations of genetic circuits regulated by 1,25(OH)2D3 suggests that they may be collectively tied to a DNA replication-differentiation switch.
ISSN:0892-6638
DOI:10.1096/fasebj.2.15.2847948