Expression of Endocrine Gland-derived Vascular Endothelial Growth Factor in Ovarian Carcinoma

The first tissue-specific angiogenic molecule, endocrine gland-derived vascular endothelial growth factor (EG-VEGF), was identified recently in human ovary, raising hopes of developing tumor type-specific angiogenesis inhibitors. In the present study, we analyzed the expression of EG-VEGF mRNA in no...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research Vol. 9; no. 1; pp. 264 - 272
Main Authors: LIN ZHANG, NUO YANG, COUKOS, George, CONEJO-GARCIA, Jose-Ramon, KATSAROS, Dionyssios, MOHAMED-HADLEY, Alisha, FRACCHIOLI, Stefano, SCHLIENGER, Katia, TOLL, Alanna, LEVINE, Bruce, RUBIN, Stephen C
Format: Journal Article
Language:English
Published: Philadelphia, PA American Association for Cancer Research 01-01-2003
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The first tissue-specific angiogenic molecule, endocrine gland-derived vascular endothelial growth factor (EG-VEGF), was identified recently in human ovary, raising hopes of developing tumor type-specific angiogenesis inhibitors. In the present study, we analyzed the expression of EG-VEGF mRNA in normal human tissues and ovarian neoplasms by quantitative real-time reverse transcription-PCR. EG-VEGF mRNA was expressed in all ovarian neoplasms examined. No significant difference was identified among benign, low malignant potential neoplasms or stage I ovarian cancer, all of which exhibited 2-fold lower mRNA levels compared with normal premenopausal ovaries. EG-VEGF mRNA levels further decreased in late stage compared with early stage carcinomas ( P < 0.05) and were consistently lower in laser capture microdissected tumor islets compared with surrounding stroma. EG-VEGF was undetectable by reverse transcription-PCR in 17 established epithelial ovarian cancer cell lines or in cultured human ovarian surface epithelial cells, whereas it was detected in peripheral blood as well as tumor-infiltrating T lymphocytes. Finally, in contrast to VEGF, EG-VEGF mRNA levels did not correlate with clinical outcome in advanced ovarian carcinoma. These results suggest that EG-VEGF is most likely derived from nonepithelial components of ovarian carcinomas and may play a marginal role in promoting angiogenesis in advanced ovarian carcinoma. We postulate that EG-VEGF-targeted antiangiogenic therapy may prove useful in early stage but not in advanced stage ovarian carcinoma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1078-0432
1557-3265