Expression of Tissue Factor Pathway Inhibitor 2 Inversely Correlates during the Progression of Human Gliomas

Protease inhibitors regulate a variety of physiological and pathological processes including angiogenesis, embryo implantation, intravascular fibrinolysis, wound healing, and tumor invasion. Tissue factor pathway inhibitor (TFPI) 2 is a M r 32,000 Kunitz-type serine protease inhibitor that inhibits...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research Vol. 7; no. 3; pp. 570 - 576
Main Authors: RAO, Chilukuri N, LAKKA, Sajani S, KIN, Yoshiaki, KONDURI, Santhi D, FULLER, Gregory N, MOHANAM, Sanjeeva, RAO, Jasti S
Format: Journal Article
Language:English
Published: Philadelphia, PA American Association for Cancer Research 01-03-2001
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protease inhibitors regulate a variety of physiological and pathological processes including angiogenesis, embryo implantation, intravascular fibrinolysis, wound healing, and tumor invasion. Tissue factor pathway inhibitor (TFPI) 2 is a M r 32,000 Kunitz-type serine protease inhibitor that inhibits plasmin, trypsin, chymotrypsin, cathepsin G, and plasma kallikrein but not urokinase-type plasminogen activator, tissue plasminogen activator, or thrombin. In this study, we determined the relative amounts of TFPI-2 in low-, intermediate-, and high-grade human glioma cell lines and tumor tissue samples. TFPI-2 protein and mRNA levels (measured by Western and Northern blotting) were highest in low-grade glioma cells (Hs683), lower in anaplastic astrocytoma cells (SW1088 and SW1783), and undetectable in high-grade glioma cells (SNB19). Analysis of TFPI-2 protein in human normal brain and in glioma tumor tissues for TFPI-2 revealed the highest levels in normal brain, lesser amounts in low-grade gliomas and anaplastic astrocytomas, and undetectable amounts in glioblastomas. In situ hybridization of TFPI-2 mRNA with normal brain tissues revealed the greatest positivity in neurons, with moderate positivity in both glial and endothelial cells and moderate, little, or no TFPI-2 mRNA in low-grade glioma, anaplastic astrocytoma, and glioblastoma tumor tissue samples, respectively. We also found that recombinant TFPI-2 inhibited the invasiveness of SNB19 glioblastoma cells in a Matrigel assay in a dose-dependent manner. Collectively, these results suggest that TFPI-2 has a regulatory role in the invasiveness of gliomas in vitro and in vivo .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1078-0432
1557-3265