The influence of coordinate overexpression of glutathione phase II detoxification gene products on drug resistance

Glutathione (GSH), glutathione S-transferases (GSTs), and the multidrug resistance-associated protein 1 (MRP1) have been independently studied for their contributions to drug resistance. Single cDNA transfection experiments have provided inconsistent and disparate conclusions with respect to the imp...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of pharmacology and experimental therapeutics Vol. 294; no. 2; p. 480
Main Authors: O'Brien, M, Kruh, G D, Tew, K D
Format: Journal Article
Language:English
Published: United States 01-08-2000
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glutathione (GSH), glutathione S-transferases (GSTs), and the multidrug resistance-associated protein 1 (MRP1) have been independently studied for their contributions to drug resistance. Single cDNA transfection experiments have provided inconsistent and disparate conclusions with respect to the importance of GSH and GST in conferring a resistant phenotype. Because these three proteins can act as a concerted coordinated pathway, we reasoned that equivalent increases may be required for enhanced resistance to be expressed. We have assembled these proteins together, or in various combinations, to determine whether they show cooperativity in determining drug response. Increased expression through single cDNA transfection of GSTpi, gamma-glutamylcysteine synthetase (gamma-GCS) (regulatory plus catalytic subunits), or MRP1 enhanced resistance to a number of anticancer drugs. Cotransfection of GSTpi and GCS, gave higher resistance to doxorubicin, etoposide, and vincristine than with either alone. Resistance toward chlorambucil and ethacrynic acid was similar in cells overexpressing either component or overexpressing GST alone. Coexpression of GSTpi with MRP1 conferred significant resistance above that seen for MRP1 alone to chlorambucil, etoposide, ethacrynic acid, and vincristine. The combination of GCS and MRP1 did not afford additional resistance above MRP1 alone. When all three were transfected, significantly higher levels of resistance were found for doxorubicin and etoposide. These results support the concept that coordinate enhancement of focal thiol elements of detoxification pathways provides a more efficient protective phenotype than do single components alone.
ISSN:0022-3565