Induction of apoptosis by benzene metabolites in HL60 and CD34+ human bone marrow progenitor cells
Two cell types, HL60 human promyelocytic leukemia cells and CD34+ human bone marrow progenitor cells, were used as model systems to explore a possible role for apoptosis in the myelotoxicity of the phenolic metabolites of benzene. HL60 cells were treated with either phenol, catechol, hydroquinone, o...
Saved in:
Published in: | Molecular pharmacology Vol. 50; no. 3; p. 610 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-09-1996
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two cell types, HL60 human promyelocytic leukemia cells and CD34+ human bone marrow progenitor cells, were used as model systems to explore a possible role for apoptosis in the myelotoxicity of the phenolic metabolites of benzene. HL60 cells were treated with either phenol, catechol, hydroquinone, or 1,2,4-benzenetriol and then stained with Hoechst 33342 and propidium iodide and subjected to fluorescent microscopy. Cells with nuclear condensation and fragmentation were scored as apoptotic, and etoposide (40 microM) was used as a positive control. Catechol, 1,2,4-benzenetriol, and hydroquinone induced marked time- (0-24 hr) and concentration- (25-100 microM) dependent apoptosis, whereas phenol (750 microM) did not. Under these conditions, no significant necrosis was observed. The induction of apoptosis was confirmed by internucleosomal cleavage of DNA, assessed by agarose gel electrophoresis. CD34+ cells treated with etoposide (40 microM) or hydroquinone (50 microM) for 18 hr were stained and subjected to fluorescent microscopy as above. The percentage of cells exhibiting nuclear condensation and/or fragmentation as well as high intensity staining significantly increased in both cases. The induction of apoptosis was confirmed using a terminal deoxynucleotidyl transferase assay. These data show that apoptosis can be induced in both HL60 and CD34+ human bone marrow progenitor cells by benzene metabolites. The ability of phenolic metabolites of benzene to induce apoptosis in human bone marrow progenitor cells may contribute to benzene myelotoxicity. |
---|---|
ISSN: | 0026-895X |