The early transcriptome response of cassava
The mealybug, Phenacoccus manihoti, is a leading pest of cassava (Manihot esculenta Crantz), damaging this crop globally. Although the biological control of this mealybug using natural predators has been established, resistance breeding remains an important means of control. Understanding plant resp...
Saved in:
Published in: | PloS one Vol. 13; no. 8; p. e0202541 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Public Library of Science
22-08-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mealybug, Phenacoccus manihoti, is a leading pest of cassava (Manihot esculenta Crantz), damaging this crop globally. Although the biological control of this mealybug using natural predators has been established, resistance breeding remains an important means of control. Understanding plant responses to insect herbivory, by determining and identifying differentially expressed genes (DEGs), is a vital step towards the understanding of molecular mechanisms of defence responses in plants and the development of resistant cultivars by gene editing. Morphological and molecular analysis confirmed the mealybug identity as Phenacoccus manihoti (Matile-Ferrero). The transcriptome response of the green mite resistant cassava genotype AR23.1 was compared to P40/1 with no known resistance at 24 and 72 hours of mealybug infestation compared to non-infested mock. A total of 301 and 206 genes were differentially expressed at 24 and 72 of mealybug infestation for AR23.1 and P40/1 genotypes respectively, using a log2 fold change and P-value [less than or equal to] 0.05. Gene ontology functional classification revealed an enrichment of genes in the secondary metabolic process category in AR23.1 in comparison with P40/1, while genes in the regulation of molecular function, cellular component biogenesis and electron carrier categories were more significantly enriched in P40/1 than in AR23.1. Biological pathway analysis, based on KEGG, revealed a significant enrichment of plant-pathogen interaction and plant hormonal signal transduction pathways for a cohort of up-regulated and down-regulated DEGs in both genotypes. Defence-related genes such as 2-oxogluterate, gibberellin oxidase and terpene synthase proteins were only induced in genotype AR23.1 and not in P40/1, and subsequently validated by RT-qPCR. The study revealed a difference in response to mealybug infestation in the two genotypes studied, with AR23.1 showing a higher number of differentially expressed transcripts post mealybug infestation at 24 and 72 hours. Candidate defence-related genes that were overexpressed in the AR23.1 genotype post mealybug infestation will be useful in future functional studies towards the control of mealybugs. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0202541 |