MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries
A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 29; no. 21 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
06-06-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li–S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g−1 and a substantial capacity of 401 mAh g−1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy‐storage devices.
A MoS2/Celgard separator is demonstrated to greatly improve cycle stability and Coulombic efficiency when used as separator in Li–S batteries, due to the high lithium conductivity and the stacked structure, which not only acts as ion sieves to block polysulfides, but also provides free spaces to accommodate various polysulfide intermediates via physiochemical interaction. |
---|---|
AbstractList | A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li–S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g−1 and a substantial capacity of 401 mAh g−1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy‐storage devices.
A MoS2/Celgard separator is demonstrated to greatly improve cycle stability and Coulombic efficiency when used as separator in Li–S batteries, due to the high lithium conductivity and the stacked structure, which not only acts as ion sieves to block polysulfides, but also provides free spaces to accommodate various polysulfide intermediates via physiochemical interaction. A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li-S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li-S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g-1 and a substantial capacity of 401 mAh g-1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy-storage devices. |
Author | Tang, Zhiyong Li, Lianshan Ghazi, Zahid Ali Sin, Haksong Khattak, Abdul Muqsit Iqbal, Azhar He, Xiao Liang, Bin Khan, Niaz Ali Wang, Jinxin |
Author_xml | – sequence: 1 givenname: Zahid Ali surname: Ghazi fullname: Ghazi, Zahid Ali organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Xiao surname: He fullname: He, Xiao organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Abdul Muqsit surname: Khattak fullname: Khattak, Abdul Muqsit organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Niaz Ali surname: Khan fullname: Khan, Niaz Ali organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Bin surname: Liang fullname: Liang, Bin organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Azhar surname: Iqbal fullname: Iqbal, Azhar organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Jinxin surname: Wang fullname: Wang, Jinxin organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Haksong surname: Sin fullname: Sin, Haksong organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Lianshan surname: Li fullname: Li, Lianshan email: lils@nanoctr.cn organization: University of Chinese Academy of Sciences – sequence: 10 givenname: Zhiyong surname: Tang fullname: Tang, Zhiyong email: zytang@nanoctr.cn organization: University of Chinese Academy of Sciences |
BookMark | eNpd0M1KAzEQB_AgFWyrV88LXrxsO0l2s5tjrfUDtihUzyHbTWrKftRkF-mtjyD4hn0SUyo9eBpm-DHM_AeoVze1QugawwgDkLEsKjkigBmwFCdnqI9jgsMIeNxDfeA0DjmL0gs0cG4NANy7PsrnzYKMp6pcSVsEC7WRVraNDaQLZlqbpVF1G7w25dZ1pTaFCu6ktUbZQHuUNfVqv_vOjFZBZtoP01X73c_Cy8562LbKU3eJzrUsnbr6q0P0_jB7mz6F2cvj83SShSvKeBKmKc8TDQVTlMm80PESYl7onCZ5QXWaE0j9Ewwz6qcJJsp_lpCI5JhQrIDQIbo97t3Y5rNTrhWVcUtVlrJWTecEThOOOXBMPb35R9dNZ2t_ncCcQIRjFsde8aP6MqXaio01lbRbgUEc8haHvMUpbzG5n09OHf0FeVx49Q |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201606817 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201606817 |
Genre | article |
GrantInformation_xml | – fundername: National Key Basic Research Program of China funderid: 2014CB931801; 2016YFA0200700 – fundername: Frontier Science Key Project of the Chinese Academy of Sciences funderid: QYZDJ‐SSW‐SLH038 – fundername: National Natural Science Foundation of China funderid: 51472054 – fundername: CAS‐CSIRO Cooperative Research Program funderid: GJHZ1503 – fundername: “Strategic Priority Research Program” of Chinese Academy of Sciences funderid: XDA09040100 – fundername: Instrument Developing Project of the Chinese Academy of Sciences funderid: YZ201311 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-g3697-889b7f0d6e36abdf5c059dfb37bd3f8b20809361639df712e4097242b1231e023 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 08:09:09 EDT 2024 Thu Oct 10 17:28:53 EDT 2024 Sat Aug 24 00:59:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3697-889b7f0d6e36abdf5c059dfb37bd3f8b20809361639df712e4097242b1231e023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1920415655 |
PQPubID | 2045203 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1879190913 proquest_journals_1920415655 wiley_primary_10_1002_adma_201606817_ADMA201606817 |
PublicationCentury | 2000 |
PublicationDate | June 6, 2017 |
PublicationDateYYYYMMDD | 2017-06-06 |
PublicationDate_xml | – month: 06 year: 2017 text: June 6, 2017 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2015; 6 2015; 11 2015; 54 2016; 10 2014; 26 2011; 11 2015; 9 2016; 16 2015; 7 2012; 11 2011; 5 2014; 64 2012; 51 2014; 20 2015; 27 2016; 1 2012; 134 2014; 2 2015; 137 2014; 14 2013; 135 2009; 8 2016 2014; 121 2012; 6 2016; 28 2014; 7 2014; 6 2012; 8 |
References_xml | – volume: 6 start-page: 5682 year: 2015 publication-title: Nat. Commun. – volume: 14 start-page: 4044 year: 2014 publication-title: Nano Lett. – volume: 26 start-page: 3403 year: 2014 publication-title: Chem. Mater. – volume: 134 start-page: 18510 year: 2012 publication-title: J. Am. Chem. Soc. – year: 2016 publication-title: Adv. Energy Mater. – volume: 28 start-page: 9797 year: 2016 publication-title: Adv. Mater. – volume: 16 start-page: 3292 year: 2016 publication-title: Nano Lett. – volume: 27 start-page: 1694 year: 2015 publication-title: Adv. Mater. – volume: 27 start-page: 641 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 209 year: 2014 publication-title: Energy Environ. Sci. – volume: 11 start-page: 356 year: 2015 publication-title: Nano Energy – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 20 start-page: 635 year: 2014 publication-title: Ionics – volume: 54 start-page: 4325 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 9592 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 16668 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 68910 year: 2012 publication-title: J. Phys. Chem. C – volume: 7 start-page: 2715 year: 2014 publication-title: Energy Environ. Sci. – volume: 2 start-page: 8854 year: 2014 publication-title: J. Mater. Chem. A – volume: 27 start-page: 1117 year: 2015 publication-title: Adv. Mater. – volume: 121 start-page: 198 year: 2014 publication-title: Mater. Lett. – volume: 2 start-page: 024013 year: 2015 publication-title: 2D Mater. – volume: 26 start-page: 625 year: 2014 publication-title: Adv. Mater. – volume: 54 start-page: 12886 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 4111 year: 2016 publication-title: ACS Nano – volume: 9 start-page: 3002 year: 2015 publication-title: ACS Nano – volume: 5 start-page: 9187 year: 2011 publication-title: ACS Nano – volume: 1 start-page: 16094 year: 2016 publication-title: Nat. Energy – volume: 137 start-page: 11542 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 154 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 135 start-page: 763 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5111 year: 2011 publication-title: Nano Lett. – volume: 26 start-page: 3879 year: 2014 publication-title: Chem. Mater. – volume: 6 start-page: 866 year: 2012 publication-title: Nat. Photonics – volume: 27 start-page: 7070 year: 2015 publication-title: Chem. Mater. – volume: 6 start-page: 8789 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 135 start-page: 16736 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 63 year: 2012 publication-title: Small |
SSID | ssj0009606 |
Score | 2.7201734 |
Snippet | A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high... A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li-S batteries. Significantly, thanks to the high... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Anodes Batteries composite membranes Decay rate Diffusion rate Energy storage Graphene Lithium Lithium batteries Lithium ions Lithium sulfur batteries Materials science Migration Molybdenum disulfide Polysulfides Separators shuttle effect Sulfur |
Title | MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606817 https://www.proquest.com/docview/1920415655 https://search.proquest.com/docview/1879190913 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTuMwFIYtYAULYLiIchl5JLZRazv1ZdmBIhZlhFSQ2EV2bEMlSFBDFux4BCTekCeZc5ISYDuzTGJL0fFx_j-2zmdCjrXIU2VCnsioXJKmyiZmALnMUy28Hg64jbjecT5Vf2706RgxOV0Vf8uH6BbccGY032uc4NZV_U9oqPUNN4iBA9cMy8kR3YQ1HOLyk7orm8M1cbMvMTLVH9TGAe9_7_7NX351qY3MnG38_wtukvWFxaSjNid-kKVQbJG1L-DBbeIuyinvnwSs4_B0GhoAeDmntqLjhikBUkQvy_vnqr6PMx_obzvHo-0oWFw6KYvb95fXySwGOpk93c3qh_eXtym0rOe05XXC7_cOuT4bX52cJ4vTFpJbIQ1IlTZOxYGXQUjrfBzm4Lx8dEI5L6J2HLylERL8G9xVjAckZYHAO9A-FkD6d8lKURZhj1AH4x5FKpkH8RPCupijOcuNyhkLnPXI4Ue0s8WUqTKwmogLkMNhj_zqHkOy4w6GLUJZQxutDDgYw0SP8Cb22WML5cha_DLPMOpZF_VsdHox6q72_6XTAVnlKOW48iIPycrTvA5HZLny9c8m2f4CggfVNA |
link.rule.ids | 315,783,787,1409,27936,27937,46067,46491 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT-MwEIZHwB5YDuwHi7YssF5pr1FrO_XHsbRFRaQIqazELYpjGypBsmrJgRs_YaX9h_wSxklb4Io4JrGlaDKT981EfgzwW_E8ltrlkfDSRHEss0h3MJdZrLhV3Q7LfOh3jCby7FINhgGT01uuhWn4EKuGW6iM-n0dCjw0pNvP1NDM1uAgihZcUbkOH2IR61CbnJ8_c3dFvb1m-N0XaRGrJbexw9qv579ymC99ai00x5_e4RY_w_bCZZJekxZfYM0VX2HrBXtwB8y4nLB234WlHJZMXM0AL2ckm5NhjZVANSLn5c39vLrxU-vIUTYLu9sRdLkkKYurx4d_ydQ7kkzvrqfV7ePD_wmOrGakQXbiF_g3-HM8vOiPosWGC9EVFxrVSmkjfccKx0VmrO_maL6sN1way70yDO2l5gItHJ6VlLkAy0KNNyh_1KH678JGURbuOxCDj97zWFCL-sd5Znwe_FmuZU6pY7QF-8twp4uqmafoNgMxQHS7Lfi1uoz5Hn5iZIUrKxyjpEYToylvAauDn_5tuBxpQ2BmaYh6uop62huMe6ujvbdM-gmbo4txkiYnZ6c_4CMLyh4aMWIfNu5mlTuA9bmtDuvMewL9oNlV |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTtwwFIaPCpUQXRQoVJ2Wi5G6jWZsZ3xZTuciEAMaaVqJXRTHNoxEEzRDFux4BKS-4TxJj5MhwBZ2udhSdHyc_7ctfwb4qXgWS-2ySHhpojiWaaQ7mMssVtyqboelPsx3nEzlxaUaDAMmp9nFX_Mhmgm30DOq_3Xo4LfWt5-hoamtuEEUHbiicg0-xngVhl-cT56xu6I6XTOs9kVaxOoJ29hh7df1XxnMlza10pnR1vu_cBs-rzwm6dVJsQMfXP4FPr0gD-6COS-mrN13YSOHJVNXEcCLOUkXZFhBJVCLyKS4uV-UN35mHfmVzsPZdgQ9LhkX-dXy4XE8846MZ3fXs_Lv8uHfFEuWc1IDO3H8vQd_RsPf_ZNoddxCdMWFRq1S2kjfscJxkRrruxlaL-sNl8ZyrwxDc6m5QAOHTyVlLqCyUOENih91qP1fYT0vcvcNiMGG9zwW1KL6cZ4anwV3lmmZUeoYbcH-U7STVZ9ZJOg1Ay9AdLstOG5eY7aHJYw0d0WJZZTUaGE05S1gVeyT25rKkdT8ZZaEqCdN1JPe4LzX3H1_S6Uj2JgMRsn49OLsB2yyIOthFkbsw_rdvHQHsLaw5WGVd_8BiqvYBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MoS2%2FCelgard+Separator+as+Efficient+Polysulfide+Barrier+for+Long%E2%80%90Life+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ghazi%2C+Zahid+Ali&rft.au=He%2C+Xiao&rft.au=Khattak%2C+Abdul+Muqsit&rft.au=Khan%2C+Niaz+Ali&rft.date=2017-06-06&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201606817&rft.externalDBID=10.1002%252Fadma.201606817&rft.externalDocID=ADMA201606817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |