MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries

A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 29; no. 21
Main Authors: Ghazi, Zahid Ali, He, Xiao, Khattak, Abdul Muqsit, Khan, Niaz Ali, Liang, Bin, Iqbal, Azhar, Wang, Jinxin, Sin, Haksong, Li, Lianshan, Tang, Zhiyong
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 06-06-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li–S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g−1 and a substantial capacity of 401 mAh g−1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy‐storage devices. A MoS2/Celgard separator is demonstrated to greatly improve cycle stability and Coulombic efficiency when used as separator in Li–S batteries, due to the high lithium conductivity and the stacked structure, which not only acts as ion sieves to block polysulfides, but also provides free spaces to accommodate various polysulfide intermediates via physiochemical interaction.
AbstractList A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li–S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g−1 and a substantial capacity of 401 mAh g−1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy‐storage devices. A MoS2/Celgard separator is demonstrated to greatly improve cycle stability and Coulombic efficiency when used as separator in Li–S batteries, due to the high lithium conductivity and the stacked structure, which not only acts as ion sieves to block polysulfides, but also provides free spaces to accommodate various polysulfide intermediates via physiochemical interaction.
A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li-S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li-S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g-1 and a substantial capacity of 401 mAh g-1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy-storage devices.
Author Tang, Zhiyong
Li, Lianshan
Ghazi, Zahid Ali
Sin, Haksong
Khattak, Abdul Muqsit
Iqbal, Azhar
He, Xiao
Liang, Bin
Khan, Niaz Ali
Wang, Jinxin
Author_xml – sequence: 1
  givenname: Zahid Ali
  surname: Ghazi
  fullname: Ghazi, Zahid Ali
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Xiao
  surname: He
  fullname: He, Xiao
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Abdul Muqsit
  surname: Khattak
  fullname: Khattak, Abdul Muqsit
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Niaz Ali
  surname: Khan
  fullname: Khan, Niaz Ali
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Bin
  surname: Liang
  fullname: Liang, Bin
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Azhar
  surname: Iqbal
  fullname: Iqbal, Azhar
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Jinxin
  surname: Wang
  fullname: Wang, Jinxin
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Haksong
  surname: Sin
  fullname: Sin, Haksong
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Lianshan
  surname: Li
  fullname: Li, Lianshan
  email: lils@nanoctr.cn
  organization: University of Chinese Academy of Sciences
– sequence: 10
  givenname: Zhiyong
  surname: Tang
  fullname: Tang, Zhiyong
  email: zytang@nanoctr.cn
  organization: University of Chinese Academy of Sciences
BookMark eNpd0M1KAzEQB_AgFWyrV88LXrxsO0l2s5tjrfUDtihUzyHbTWrKftRkF-mtjyD4hn0SUyo9eBpm-DHM_AeoVze1QugawwgDkLEsKjkigBmwFCdnqI9jgsMIeNxDfeA0DjmL0gs0cG4NANy7PsrnzYKMp6pcSVsEC7WRVraNDaQLZlqbpVF1G7w25dZ1pTaFCu6ktUbZQHuUNfVqv_vOjFZBZtoP01X73c_Cy8562LbKU3eJzrUsnbr6q0P0_jB7mz6F2cvj83SShSvKeBKmKc8TDQVTlMm80PESYl7onCZ5QXWaE0j9Ewwz6qcJJsp_lpCI5JhQrIDQIbo97t3Y5rNTrhWVcUtVlrJWTecEThOOOXBMPb35R9dNZ2t_ncCcQIRjFsde8aP6MqXaio01lbRbgUEc8haHvMUpbzG5n09OHf0FeVx49Q
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201606817
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201606817
Genre article
GrantInformation_xml – fundername: National Key Basic Research Program of China
  funderid: 2014CB931801; 2016YFA0200700
– fundername: Frontier Science Key Project of the Chinese Academy of Sciences
  funderid: QYZDJ‐SSW‐SLH038
– fundername: National Natural Science Foundation of China
  funderid: 51472054
– fundername: CAS‐CSIRO Cooperative Research Program
  funderid: GJHZ1503
– fundername: “Strategic Priority Research Program” of Chinese Academy of Sciences
  funderid: XDA09040100
– fundername: Instrument Developing Project of the Chinese Academy of Sciences
  funderid: YZ201311
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-g3697-889b7f0d6e36abdf5c059dfb37bd3f8b20809361639df712e4097242b1231e023
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Fri Aug 16 08:09:09 EDT 2024
Thu Oct 10 17:28:53 EDT 2024
Sat Aug 24 00:59:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3697-889b7f0d6e36abdf5c059dfb37bd3f8b20809361639df712e4097242b1231e023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1920415655
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_1879190913
proquest_journals_1920415655
wiley_primary_10_1002_adma_201606817_ADMA201606817
PublicationCentury 2000
PublicationDate June 6, 2017
PublicationDateYYYYMMDD 2017-06-06
PublicationDate_xml – month: 06
  year: 2017
  text: June 6, 2017
  day: 06
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2015; 6
2015; 11
2015; 54
2016; 10
2014; 26
2011; 11
2015; 9
2016; 16
2015; 7
2012; 11
2011; 5
2014; 64
2012; 51
2014; 20
2015; 27
2016; 1
2012; 134
2014; 2
2015; 137
2014; 14
2013; 135
2009; 8
2016
2014; 121
2012; 6
2016; 28
2014; 7
2014; 6
2012; 8
References_xml – volume: 6
  start-page: 5682
  year: 2015
  publication-title: Nat. Commun.
– volume: 14
  start-page: 4044
  year: 2014
  publication-title: Nano Lett.
– volume: 26
  start-page: 3403
  year: 2014
  publication-title: Chem. Mater.
– volume: 134
  start-page: 18510
  year: 2012
  publication-title: J. Am. Chem. Soc.
– year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 9797
  year: 2016
  publication-title: Adv. Mater.
– volume: 16
  start-page: 3292
  year: 2016
  publication-title: Nano Lett.
– volume: 27
  start-page: 1694
  year: 2015
  publication-title: Adv. Mater.
– volume: 27
  start-page: 641
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 209
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 356
  year: 2015
  publication-title: Nano Energy
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 20
  start-page: 635
  year: 2014
  publication-title: Ionics
– volume: 54
  start-page: 4325
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 9592
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 16668
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 68910
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 2715
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 8854
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 1117
  year: 2015
  publication-title: Adv. Mater.
– volume: 121
  start-page: 198
  year: 2014
  publication-title: Mater. Lett.
– volume: 2
  start-page: 024013
  year: 2015
  publication-title: 2D Mater.
– volume: 26
  start-page: 625
  year: 2014
  publication-title: Adv. Mater.
– volume: 54
  start-page: 12886
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 4111
  year: 2016
  publication-title: ACS Nano
– volume: 9
  start-page: 3002
  year: 2015
  publication-title: ACS Nano
– volume: 5
  start-page: 9187
  year: 2011
  publication-title: ACS Nano
– volume: 1
  start-page: 16094
  year: 2016
  publication-title: Nat. Energy
– volume: 137
  start-page: 11542
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 154
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 135
  start-page: 763
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5111
  year: 2011
  publication-title: Nano Lett.
– volume: 26
  start-page: 3879
  year: 2014
  publication-title: Chem. Mater.
– volume: 6
  start-page: 866
  year: 2012
  publication-title: Nat. Photonics
– volume: 27
  start-page: 7070
  year: 2015
  publication-title: Chem. Mater.
– volume: 6
  start-page: 8789
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 135
  start-page: 16736
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 63
  year: 2012
  publication-title: Small
SSID ssj0009606
Score 2.7201734
Snippet A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high...
A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li-S batteries. Significantly, thanks to the high...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Anodes
Batteries
composite membranes
Decay rate
Diffusion rate
Energy storage
Graphene
Lithium
Lithium batteries
Lithium ions
Lithium sulfur batteries
Materials science
Migration
Molybdenum disulfide
Polysulfides
Separators
shuttle effect
Sulfur
Title MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606817
https://www.proquest.com/docview/1920415655
https://search.proquest.com/docview/1879190913
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTuMwFIYtYAULYLiIchl5JLZRazv1ZdmBIhZlhFSQ2EV2bEMlSFBDFux4BCTekCeZc5ISYDuzTGJL0fFx_j-2zmdCjrXIU2VCnsioXJKmyiZmALnMUy28Hg64jbjecT5Vf2706RgxOV0Vf8uH6BbccGY032uc4NZV_U9oqPUNN4iBA9cMy8kR3YQ1HOLyk7orm8M1cbMvMTLVH9TGAe9_7_7NX351qY3MnG38_wtukvWFxaSjNid-kKVQbJG1L-DBbeIuyinvnwSs4_B0GhoAeDmntqLjhikBUkQvy_vnqr6PMx_obzvHo-0oWFw6KYvb95fXySwGOpk93c3qh_eXtym0rOe05XXC7_cOuT4bX52cJ4vTFpJbIQ1IlTZOxYGXQUjrfBzm4Lx8dEI5L6J2HLylERL8G9xVjAckZYHAO9A-FkD6d8lKURZhj1AH4x5FKpkH8RPCupijOcuNyhkLnPXI4Ue0s8WUqTKwmogLkMNhj_zqHkOy4w6GLUJZQxutDDgYw0SP8Cb22WML5cha_DLPMOpZF_VsdHox6q72_6XTAVnlKOW48iIPycrTvA5HZLny9c8m2f4CggfVNA
link.rule.ids 315,783,787,1409,27936,27937,46067,46491
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT-MwEIZHwB5YDuwHi7YssF5pr1FrO_XHsbRFRaQIqazELYpjGypBsmrJgRs_YaX9h_wSxklb4Io4JrGlaDKT981EfgzwW_E8ltrlkfDSRHEss0h3MJdZrLhV3Q7LfOh3jCby7FINhgGT01uuhWn4EKuGW6iM-n0dCjw0pNvP1NDM1uAgihZcUbkOH2IR61CbnJ8_c3dFvb1m-N0XaRGrJbexw9qv579ymC99ai00x5_e4RY_w_bCZZJekxZfYM0VX2HrBXtwB8y4nLB234WlHJZMXM0AL2ckm5NhjZVANSLn5c39vLrxU-vIUTYLu9sRdLkkKYurx4d_ydQ7kkzvrqfV7ePD_wmOrGakQXbiF_g3-HM8vOiPosWGC9EVFxrVSmkjfccKx0VmrO_maL6sN1way70yDO2l5gItHJ6VlLkAy0KNNyh_1KH678JGURbuOxCDj97zWFCL-sd5Znwe_FmuZU6pY7QF-8twp4uqmafoNgMxQHS7Lfi1uoz5Hn5iZIUrKxyjpEYToylvAauDn_5tuBxpQ2BmaYh6uop62huMe6ujvbdM-gmbo4txkiYnZ6c_4CMLyh4aMWIfNu5mlTuA9bmtDuvMewL9oNlV
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTtwwFIaPCpUQXRQoVJ2Wi5G6jWZsZ3xZTuciEAMaaVqJXRTHNoxEEzRDFux4BKS-4TxJj5MhwBZ2udhSdHyc_7ctfwb4qXgWS-2ySHhpojiWaaQ7mMssVtyqboelPsx3nEzlxaUaDAMmp9nFX_Mhmgm30DOq_3Xo4LfWt5-hoamtuEEUHbiicg0-xngVhl-cT56xu6I6XTOs9kVaxOoJ29hh7df1XxnMlza10pnR1vu_cBs-rzwm6dVJsQMfXP4FPr0gD-6COS-mrN13YSOHJVNXEcCLOUkXZFhBJVCLyKS4uV-UN35mHfmVzsPZdgQ9LhkX-dXy4XE8846MZ3fXs_Lv8uHfFEuWc1IDO3H8vQd_RsPf_ZNoddxCdMWFRq1S2kjfscJxkRrruxlaL-sNl8ZyrwxDc6m5QAOHTyVlLqCyUOENih91qP1fYT0vcvcNiMGG9zwW1KL6cZ4anwV3lmmZUeoYbcH-U7STVZ9ZJOg1Ay9AdLstOG5eY7aHJYw0d0WJZZTUaGE05S1gVeyT25rKkdT8ZZaEqCdN1JPe4LzX3H1_S6Uj2JgMRsn49OLsB2yyIOthFkbsw_rdvHQHsLaw5WGVd_8BiqvYBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MoS2%2FCelgard+Separator+as+Efficient+Polysulfide+Barrier+for+Long%E2%80%90Life+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ghazi%2C+Zahid+Ali&rft.au=He%2C+Xiao&rft.au=Khattak%2C+Abdul+Muqsit&rft.au=Khan%2C+Niaz+Ali&rft.date=2017-06-06&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201606817&rft.externalDBID=10.1002%252Fadma.201606817&rft.externalDocID=ADMA201606817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon