A Hydrogen‐Bonded Organic Framework (HOF) with Type IV NH3 Adsorption Behavior
An S‐shaped gas isotherm pattern displays high working capacity in pressure‐swing adsorption cycle, as established for CO2, CH4, acetylene, and CO. However, to our knowledge, this type of adsorption behavior has not been revealed for NH3 gas. Herein, we design and characterize a hydrogen‐bonded orga...
Saved in:
Published in: | Angewandte Chemie International Edition Vol. 58; no. 45; pp. 16152 - 16155 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
04-11-2019
|
Edition: | International ed. in English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An S‐shaped gas isotherm pattern displays high working capacity in pressure‐swing adsorption cycle, as established for CO2, CH4, acetylene, and CO. However, to our knowledge, this type of adsorption behavior has not been revealed for NH3 gas. Herein, we design and characterize a hydrogen‐bonded organic framework (HOF) that can adsorb NH3 uniquely in an S‐shape (type IV) fashion. While conventional porous materials, mostly with type I NH3 adsorption behavior, require relatively high regeneration temperature, this platform which has significant working capacity is easily regenerated and recyclable at room temperature.
Easy come, easy go: A hydrogen‐bonded organic framework (HOF) can interact with NH3 to give a type IV ammonia isotherm. This characteristic is responsible for high working capacity and facile release of NH3 under mild conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201911087 |