World's highest efficiency triple-junction solar cells fabricated by inverted layers transfer process

A world record-setting efficiency of 35.8% at AM1.5G (x1) has been demonstrated by an InGaP (1.88 eV)/GaAs/InGaAs (0.97 eV) triple-junction solar cell fabricated using the inverted layer transfer process. Lattice-matched top and middle cells are grown first. Then, a lattice-mismatched bottom cell is...

Full description

Saved in:
Bibliographic Details
Published in:2010 35th IEEE Photovoltaic Specialists Conference pp. 000412 - 000417
Main Authors: Takamoto, T, Agui, T, Yoshida, A, Nakaido, K, Juso, H, Sasaki, K, Nakamora, K, Yamaguchi, H, Kodama, T, Washio, H, Imaizumi, M, Takahashi, M
Format: Conference Proceeding
Language:English
Published: IEEE 01-01-2010
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A world record-setting efficiency of 35.8% at AM1.5G (x1) has been demonstrated by an InGaP (1.88 eV)/GaAs/InGaAs (0.97 eV) triple-junction solar cell fabricated using the inverted layer transfer process. Lattice-matched top and middle cells are grown first. Then, a lattice-mismatched bottom cell is grown to attain good crystal quality for the top and middle cells. A large stress caused by the increasing lattice constant is successfully released in a buffer layer between the middle and bottom cells, and a high Voc close to Eg/q-0.4 V has been achieved for the lattice-mismatched InGaAs bottom cell. The high Voc of over 3.0 V contributed to the record efficiency. After epitaxial growth, the cell layers on the GaAs substrate are transferred on a handling substrate. As the cell layer is transferred onto a film substrate, a lightweight flexible cell can be fabricated. New triple-junction cells will be applied to a flexible module, called a "space solar sheet," after optimization of the cell structure for the AM0 spectrum and radiation tolerance. A heat-resistant concentrator cell can be obtained by transferring the cell layer onto a heat sink substrate. A terrestrial concentrator cell using the new structure is also attractive, because a high efficiency of close to 45% can be expected.
ISBN:9781424458905
1424458900
ISSN:0160-8371
DOI:10.1109/PVSC.2010.5616778