Influence of ocean and freshwater conditions on Columbia River sockeye salmon Oncorhynchus nerka adult return rates
In recent years, returns of adult sockeye salmon Oncorhynchus nerka to the Columbia River Basin have reached numbers not observed since the 1950s. To understand factors related to these increased returns, we first looked for changes in freshwater production and survival of juvenile migrants. We then...
Saved in:
Published in: | Fisheries oceanography Vol. 23; no. 3; pp. 210 - 224 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Wiley
01-05-2014
Blackwell Publishing Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, returns of adult sockeye salmon Oncorhynchus nerka to the Columbia River Basin have reached numbers not observed since the 1950s. To understand factors related to these increased returns, we first looked for changes in freshwater production and survival of juvenile migrants. We then evaluated productivity changes by estimating smolt‐to‐adult return rates (SAR) for juvenile migration years 1985–2010. We found SAR varied between 0.2 and 23.5%, with the highest values coinciding with recent large adult returns. However, the largest adult return, in 2012, resulted not from increased survival, but from increased smolt production. We evaluated 19 different variables that could influence SARs, representing different facets of freshwater and ocean conditions. We used model selection criteria based on small‐sample corrected AIC to evaluate the relative performance of all two‐ and three‐variable models. The model with April upwelling, Pacific Northwest Index (PNI) in the migration year, and PNI in the year before migration had 10 times the AICc weight as the second‐best‐supported model, and R² = 0.82. The variables of April ocean upwelling and PNI in the migration year had high weights of 0.996 and 0.927, respectively, indicating they were by far the best of the candidate variables to explain variations in SAR. While our analyses were primarily correlative and limited by the type and amount of data currently available, changes in ocean conditions in the northern California Current system, as captured by April upwelling and PNI, appeared to play a large role in the variability of SAR. |
---|---|
Bibliography: | http://dx.doi.org/10.1111/fog.12056 ArticleID:FOG12056 istex:D53F0E32DD4404493F347C38CF89E3A3FFE74AC7 ark:/67375/WNG-QNWGHMZ3-R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1054-6006 1365-2419 |
DOI: | 10.1111/fog.12056 |