Metabolic acidosis in sheep alters expression of renal and skeletal muscle amino acid enzymes and transporters
To determine the effect of metabolic acidosis on expression of L-Gln, L-Glu, and L-Asp metabolizing enzymes and transporters, the relative content of mRNA, protein, or mRNA and protein, of 6 enzymes and 5 transporters was determined by real-time reverse transcription-PCR and immunoblot analyses in h...
Saved in:
Published in: | Journal of animal science Vol. 88; no. 2; pp. 707 - 717 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Champaign, IL
American Society of Animal Science
01-02-2010
Am Soc Animal Sci |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To determine the effect of metabolic acidosis on expression of L-Gln, L-Glu, and L-Asp metabolizing enzymes and transporters, the relative content of mRNA, protein, or mRNA and protein, of 6 enzymes and 5 transporters was determined by real-time reverse transcription-PCR and immunoblot analyses in homogenates of kidney, skeletal muscle, and liver of growing lambs fed a common diet supplemented with canola meal (control; n = 5) or HCl-treated canola meal (acidosis; n = 5). Acidotic sheep had a 790% greater (P = 0.050) expression of renal Na⁺-coupled neutral AA transporter 3 mRNA and a decreased expression of renal glutamine synthetase mRNA (47% reduction, P = 0.037) and protein (57% reduction, P = 0.015) than control sheep. No change in renal cytosolic phosphoenolpyruvate carboxykinase (protein and mRNA), glutaminase (mRNA), or L-Glu dehydrogenase (protein) was found. In skeletal muscle, acidotic sheep had 101% more (P = 0.026) aspartate transaminase protein than did control sheep, whereas no change in the content of 3 Na⁺-coupled neutral AA transporters (mRNA) or 2 high-affinity L-Glu transporter proteins was found. In liver, no change in the content of any assessed enzyme or transporter was found. Collectively, these findings suggest that tissue-level responses of sheep to metabolic acidosis are different than for nonruminants. More specifically, these results indicate the potential capacity for metabolism of L-Asp and L-Glu by skeletal muscle, and L-Gln absorption by kidneys, but no change in hepatic expression of L-Gln metabolism, elaborates previous metabolic studies by revealing molecular-level responses to metabolic acidosis in sheep. The reader is cautioned that the metabolic acidosis model employed in this study differs from the increased plasma lactate-induced metabolic acidosis commonly observed in ruminants fed a highly fermentable grain diet. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.2527/jas.2009-2101 |