The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles

Silicon is considered the next-generation, high-capacity anode for Li-ion energy storage applications, however, despite significant effort, there are still uncertainties regarding the bulk Si and surface SiO2 structural and chemical evolution as it undergoes lithiation and amorphization. In this pap...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta Vol. 331; p. 1
Main Authors: Sivonxay, Eric, Aykol, Muratahan, Persson, Kristin A.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 20-01-2020
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silicon is considered the next-generation, high-capacity anode for Li-ion energy storage applications, however, despite significant effort, there are still uncertainties regarding the bulk Si and surface SiO2 structural and chemical evolution as it undergoes lithiation and amorphization. In this paper, we present first-principles calculations of the evolution of the amorphous Si anode, including its oxide surface layer, as a function of Li concentration. We benchmark our methodology by comparing the results for the Si bulk to existing experimental evidence of local structure evolution, ionic diffusivity as well as electrochemical activity. Recognizing the important role of the surface Si oxide (either native or artificially grown), we undertake the same calculations for amorphous SiO2, analyzing its potential impact on the activity of Si anode materials. Derived voltage curves for the amorphous phases compare well to experimental results, highlighting that SiO2 lithiates at approximately 0.7 V higher than Si in the low Li concentration regime, which provides an important electrochemical fingerprint. The combined evidence suggests that i) the inherent diffusivity of amorphous Si is high (in the order 10−9cm2s−1 - 10−7cm2s−1), ii) SiO2 is thermodynamically driven to lithiate, such that Li–O local environments are increasingly favored as compared to Si–O bonding, iii) the ionic diffusivity of Li in LiySiO2 is initially two orders of magnitude lower than that of LiySi at low Li concentrations but increases rapidly with increasing Li content and iv) the final lithiation product of SiO2 is Li2O and highly lithiated silicides. Hence, this work suggests that - excluding explicit interactions with the electrolyte - the SiO2 surface layer presents a kinetic impediment for the lithiation of Si and a sink for Li inventory, resulting in non-reversible capacity loss through strong local Li–O bond formation. [Display omitted]
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2019.135344