Micro-contact printing on oxide surfaces for model catalysts using e-beam written masters in hydrogen silsesquioxane
In order to make model catalysts for fundamental research in heterogeneous catalysis, carrier oxide surfaces with well-defined properties are needed. Micro-contact printing has been used to make specific parts of a (hydroxylated) silicon oxide surface hydrophobic. The method comprises the e-beam wri...
Saved in:
Published in: | Microelectronic engineering Vol. 73; pp. 202 - 208 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-06-2004
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to make model catalysts for fundamental research in heterogeneous catalysis, carrier oxide surfaces with well-defined properties are needed. Micro-contact printing has been used to make specific parts of a (hydroxylated) silicon oxide surface hydrophobic. The method comprises the e-beam writing of a master in hydrogen silsesquioxane (HSQ) on silicon, the casting of a polydimethylsiloxane (PDMS) silicone elastomer stamp, the inking of the stamp with octadecyltrichlorosilane (OTS) and the printing of the OTS on a hydroxylated SiO
2 surface. KCl crystals have been precipitated on the hydrophilic part of the printed surface by evaporation of ethanol droplets with dissolved KCl. KCl serves as a model system for the usual transition metal salts employed in the preparation of metal- or metal-oxide catalysts. Crystal size and crystallite density-on-carrier can be determined by the duty cycle and pitch of the hydrophilic part of the printed surface. |
---|---|
Bibliography: | SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
ISSN: | 0167-9317 1873-5568 |
DOI: | 10.1016/j.mee.2004.02.041 |