Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies
The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electrocardiography (ECG) analysis model using limited EC...
Saved in:
Published in: | PloS one Vol. 19; no. 8; p. e0307978 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
14-08-2024
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electrocardiography (ECG) analysis model using limited ECG data. We pretrained Vision Transformer (ViT) models by reconstructing the masked ECG data with MAE. We fine-tuned this MAE-based ECG pretrained model on ECG-echocardiography data from The University of Tokyo Hospital (UTokyo) for the detection of left ventricular systolic dysfunction (LVSD), and then evaluated it using multi-center external validation data from seven institutions, employing the area under the receiver operating characteristic curve (AUROC) for assessment. We included 38,245 ECG-echocardiography pairs from UTokyo and 229,439 pairs from all institutions. The performances of MAE-based ECG models pretrained using ECG data from UTokyo were significantly higher than that of other Deep Neural Network models across all external validation cohorts (AUROC, 0.913-0.962 for LVSD, p < 0.001). Moreover, we also found improvements for the MAE-based ECG analysis model depending on the model capacity and the amount of training data. Additionally, the MAE-based ECG analysis model maintained high performance even on the ECG benchmark dataset (PTB-XL). Our proposed method developed high performance MAE-based ECG analysis models using limited ECG data. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0307978 |