Endogenous β-glucocerebrosidase activity in Abca12−/−epidermis elevates ceramide levels after topical lipid application but does not restore barrier function
ABCA12 mutations disrupt the skin barrier and cause harlequin ichthyosis. We previously showed Abca12−/− skin has increased glucosylceramide (GlcCer) and correspondingly lower amounts of ceramide (Cer). To examine why loss of ABCA12 leads to accumulation of GlcCer, de novo sphingolipid synthesis was...
Saved in:
Published in: | Journal of lipid research Vol. 55; no. 3; pp. 493 - 503 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-03-2014
The American Society for Biochemistry and Molecular Biology Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABCA12 mutations disrupt the skin barrier and cause harlequin ichthyosis. We previously showed Abca12−/− skin has increased glucosylceramide (GlcCer) and correspondingly lower amounts of ceramide (Cer). To examine why loss of ABCA12 leads to accumulation of GlcCer, de novo sphingolipid synthesis was assayed using [14C]serine labeling in ex vivo skin cultures. A defect was found in β-glucocerebrosidase (GCase) processing of newly synthesized GlcCer species. This was not due to a decline in GCase function. Abca12−/− epidermis had 5-fold more GCase protein (n = 4, P < 0.01), and a 5-fold increase in GCase activity (n = 3, P < 0.05). As with Abca12+/+ epidermis, immunostaining in null skin showed a typical interstitial distribution of the GCase protein in the Abca12−/− stratum corneum. Hence, we tested whether the block in GlcCer conversion could be circumvented by topically providing GlcCer. This approach restored up to 15% of the lost Cer products of GCase activity in the Abca12−/− epidermis. However, this level of barrier ceramide replacement did not significantly reduce trans-epidermal water loss function. Our results indicate loss of ABCA12 function results in a failure of precursor GlcCer substrate to productively interact with an intact GCase enzyme, and they support a model of ABCA12 function that is critical for transporting GlcCer into lamellar bodies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-2275 1539-7262 |
DOI: | 10.1194/jlr.M044941 |