3D FRP Reinforcement Systems for Concrete Beams: Innovation towards High Performance Concrete Structures
Despite the advantages of using lightweight and non-corrosive carbon fiber reinforced polymer (CFRP) reinforcements in concrete structures, their widespread adoption has been limited due to concerns regarding the brittle failure of CFRP rupture and its relatively softer load-deflection stiffness. Th...
Saved in:
Published in: | Materials Vol. 17; no. 12; p. 2826 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
10-06-2024
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite the advantages of using lightweight and non-corrosive carbon fiber reinforced polymer (CFRP) reinforcements in concrete structures, their widespread adoption has been limited due to concerns regarding the brittle failure of CFRP rupture and its relatively softer load-deflection stiffness. This work offers logical solutions to these two crucial problems: using aggregate coating to strengthen the CFRP-concrete bond and ultimately the load-deflection stiffness, and using CFRP-concrete debonding propagation to create pseudo-ductile behavior. Subsequently, the concrete cracking behavior, the apparent CFRP modulus with aggregates, and the post-peak capacity and deflection of three-dimensional (3D) CFRP-reinforced concrete are all described by equations derived from experiments. These formulas will be helpful in the future design of non-prismatic concrete components for low-impact building projects. The potential of this innovative design scheme in terms of increased capacity and deflections with less concrete material is demonstrated through comparisons between non-prismatic CFRP-reinforced concrete and measured steel reinforced equivalency. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17122826 |