METTL1 promotes hepatocarcinogenesis via m7G tRNA modification‐dependent translation control

Background N7‐methylguanosine (m7G) modification is one of the most common transfer RNA (tRNA) modifications in humans. The precise function and molecular mechanism of m7G tRNA modification in hepatocellular carcinoma (HCC) remain poorly understood. Methods The prognostic value and expression level...

Full description

Saved in:
Bibliographic Details
Published in:Clinical and translational medicine Vol. 11; no. 12
Main Authors: Chen, Zhihang, Zhu, Wanjie, Zhu, Shenghua, Sun, Kaiyu, Liao, Junbin, Liu, Haining, Dai, Zihao, Han, Hui, Ren, Xuxin, Yang, Qingxia, Zheng, Siyi, Peng, Baogang, Peng, Sui, Kuang, Ming, Lin, Shuibin
Format: Journal Article
Language:English
Published: Heidelberg John Wiley & Sons, Inc 01-12-2021
John Wiley and Sons Inc
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background N7‐methylguanosine (m7G) modification is one of the most common transfer RNA (tRNA) modifications in humans. The precise function and molecular mechanism of m7G tRNA modification in hepatocellular carcinoma (HCC) remain poorly understood. Methods The prognostic value and expression level of m7G tRNA methyltransferase complex components methyltransferase‐like protein‐1 (METTL1) and WD repeat domain 4 (WDR4) in HCC were evaluated using clinical samples and TCGA data. The biological functions and mechanisms of m7G tRNA modification in HCC progression were studied in vitro and in vivo using cell culture, xenograft model, knockin and knockout mouse models. The m7G reduction and cleavage sequencing (TRAC‐seq), polysome profiling and polyribosome‐associated mRNA sequencing methods were used to study the levels of m7G tRNA modification, tRNA expression and mRNA translation efficiency. Results The levels of METTL1 and WDR4 are elevated in HCC and associated with advanced tumour stages and poor patient survival. Functionally, silencing METTL1 or WDR4 inhibits HCC cell proliferation, migration and invasion, while forced expression of wild‐type METTL1 but not its catalytic dead mutant promotes HCC progression. Knockdown of METTL1 reduces m7G tRNA modification and decreases m7G‐modified tRNA expression in HCC cells. Mechanistically, METTL1‐mediated tRNA m7G modification promotes the translation of target mRNAs with higher frequencies of m7G‐related codons. Furthermore, in vivo studies with Mettl1 knockin and conditional knockout mice reveal the essential physiological function of Mettl1 in hepatocarcinogenesis using hydrodynamics transfection HCC model. Conclusions Our work reveals new insights into the role of the misregulated tRNA modifications in liver cancer and provides molecular basis for HCC diagnosis and treatment. m7G tRNA modification and its catalytic enzyme METTL1 are elevated in hepatocellular carcinoma (HCC) and associated with poor HCC prognosis. The m7G tRNAs are essential for tRNA expression and mRNA translation. Overactive m7G tRNA expression promotes hepatocarcinogenesis in vitro and in hydrodynamic transfection HCC mouse models.
Bibliography:Zhihang Chen, Wanjie Zhu and Shenghua Zhu contributed equally.
ISSN:2001-1326
2001-1326
DOI:10.1002/ctm2.661