Buckling Analysis of Embedded Nanosize FG Beams Based on a Refined Hyperbolic Shear Deformation Theory
In this study, the mechanical buckling response of refined hyperbolic shear deformable (FG) functionally graded nanobeams embedded in an elastic foundation is investigated based on the refined hyperbolic shear deformation theory. Material properties of the FG nanobeam change continuously in the thic...
Saved in:
Published in: | Journal of applied and computational mechanics Vol. 4; no. 3; pp. 140 - 146 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Shahid Chamran University of Ahvaz
01-06-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the mechanical buckling response of refined hyperbolic shear deformable (FG) functionally graded nanobeams embedded in an elastic foundation is investigated based on the refined hyperbolic shear deformation theory. Material properties of the FG nanobeam change continuously in the thickness direction based on the power-law model. To capture small size effects, Eringen’s nonlocal elasticity theory is adopted. Employing Hamilton’s principle, the nonlocal governing equations of FG nanobeams embedded in the elastic foundation are obtained. To predict the buckling behavior of embedded FG nanobeams, the Navier-type analytical solution is applied to solve the governing equations. Numerical results demonstrate the influences of various parameters such as elastic foundation, power-law index, nonlocal parameter, and slenderness ratio on the critical buckling loads of size dependent FG nanobeams. |
---|---|
ISSN: | 2383-4536 2383-4536 |
DOI: | 10.22055/jacm.2017.22996.1146 |