TNF-α Induces a Pro-Inflammatory Phenotypic Shift in Monocytes through ACSL1: Relevance to Metabolic Inflammation

TNF-α-mediated pro-inflammatory phenotypic change in monocytes is known to be implicated in the pathogenesis of metabolic inflammation and insulin resistance. However, the mechanism by which TNF-α-induces inflammatory phenotypic shift in monocytes is poorly understood. Since long-chain acyl-CoA synt...

Full description

Saved in:
Bibliographic Details
Published in:Cellular physiology and biochemistry Vol. 52; no. 3; pp. 397 - 407
Main Authors: Al-Rashed, Fatema, Ahmad, Zunair, Iskandar, Mina Amin, Tuomilehto, Jaakko, Al-Mulla, Fahd, Ahmad, Rasheed
Format: Journal Article
Language:English
Published: Germany Cell Physiol Biochem Press GmbH & Co KG 2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:TNF-α-mediated pro-inflammatory phenotypic change in monocytes is known to be implicated in the pathogenesis of metabolic inflammation and insulin resistance. However, the mechanism by which TNF-α-induces inflammatory phenotypic shift in monocytes is poorly understood. Since long-chain acyl-CoA synthetase 1 (ACSL1) is associated with inflammatory monocytes/macrophages, we investigated the role of ACSL1 in the TNF-α-driven inflammatory phenotypic shift in the monocytes. Monocytes (Human monocytic THP-1 cells) were stimulated with TNF-α. Inflammatory phenotypic markers (CD16, CD11b, CD11c and HLA-DR) expression was determined with real time RTPCR and flow cytometry. IL-1β and MCP-1 were determined by ELISA. Signaling pathways were identified by using ACSL1 inhibitor, ACSL1 siRNA and NF-κB reporter monocytic cells. Phosphorylation of NF-κB was analyzed by western blotting and flow cytometry. Our data show that TNF-α induced significant increase in the expression of CD16, CD11b, CD11c and HLA-DR. Inhibition of ACSL1 activity in the cells with triacsin C significantly suppressed the expression of these inflammatory markers. Using ACSL-1 siRNA, we further demonstrate that TNF-α-induced inflammatory markers expression in monocytic cells requires ACSL1. In addition, IL-1b and MCP-1 production by TNF-α activated monocytic cells was significantly blocked by the inhibition of ACSL-1 activity. Interestingly, elevated NF-κB activity resulting from TNF-α stimulation was attenuated in ACSL1 deficient cells. Our findings provide an evidence that TNF-α-associated inflammatory polarization in monocytes is an ACSL1 dependent process, which indicates its central role in TNF-α-driven metabolic inflammation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1015-8987
1421-9778
DOI:10.33594/000000028