Design and performance investigation of electrospun PVA nanofibers containing core-shell nanostructures for anticancer drug delivery

Objective: The purpose of this work was design and performance investigation of a nanocarrier based on magnetic nanofibers containing core-shell nanostructuresfor anticancerdrug delivery of daunorubicin (DAN) by measuring their drug release at different pH values. Methods: Fe3O4 nanoparticles and Fe...

Full description

Saved in:
Bibliographic Details
Published in:Nanomedicine research journal Vol. 3; no. 1; pp. 31 - 36
Main Authors: Sakineh Kavyanifar, Tayebeh Shamspur, Fariba Fathirad, Ali Mostafavi
Format: Journal Article
Language:English
Published: Iranian Society of Nanomedicine 01-01-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: The purpose of this work was design and performance investigation of a nanocarrier based on magnetic nanofibers containing core-shell nanostructuresfor anticancerdrug delivery of daunorubicin (DAN) by measuring their drug release at different pH values. Methods: Fe3O4 nanoparticles and Fe3O4@SiO2core-shell nanostructures were synthesized through coprecipitation and Stöber methodrespectively. The composite nanofibers of polyvinyl alcohol containing core-shell nanostructures and anticancer drug of daunorubicinwere fabricated by electrospinning method.The nanostructures were characterized bySEM, XRD,VSM and FTIR techniques. The drug release was investigated by UV-Vis spectrophotometer at different pHs. Results: The results is shown that in vitro drug release at pH= 6.0 is promisingly more and faster than drug release at pH= 7.4. The fitted equation of release curves is corresponded to Peppas model. Conclusions: It can be concluded that the proposed nanocarrier is capable of responding to pH changes, that is an advantage in the targeted delivery of the drug. Also, this method has the advantages of magnetic sensitivity, high drug loading capacity and sustained release.
ISSN:2476-3489
2476-7123
DOI:10.22034/nmrj.2018.01.005