Extended p3/2 Neutron Orbital and the N=32 Shell Closure in Ca 52
The one-neutron knockout from 52Ca in inverse kinematics onto a proton target was performed at ∼230 MeV/nucleon combined with prompt γ spectroscopy. Exclusive quasifree scattering cross sections to bound states in 51Ca and the momentum distributions corresponding to the removal of 1f7/2 and 2p3/2 n...
Saved in:
Published in: | Physical review letters |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English Norwegian |
Published: |
American Physical Society
23-12-2022
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The one-neutron knockout from 52Ca in inverse kinematics onto a proton target was performed at ∼230 MeV/nucleon combined with prompt γ spectroscopy. Exclusive quasifree scattering cross sections to bound states in 51Ca and the momentum distributions corresponding to the removal of 1f7/2 and 2p3/2 neutrons were measured. The cross sections, interpreted within the distorted-wave impulse approximation reaction framework, are consistent with a shell closure at the neutron number N=32, found as strong as at N=28 and N=34 in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron 1f7/2 and 2p3/2 orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the 2p3/2 orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.129.262501 |