Abstract 3399: Preclinical evaluation of eFT226, a potent and selective eIF4A inhibitor with anti-tumor activity in FGFR1,2 and HER2 driven cancers

Mutations or amplifications affecting receptor tyrosine kinases (RTKs) activate the RAS/MAPK and PI3K/AKT signaling pathways thereby promoting cancer cell proliferation and survival. Oncoprotein expression is tightly controlled at the level of mRNA translation and is regulated by the eukaryotic tran...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Vol. 80; no. 16_Supplement; p. 3399
Main Authors: Thompson, Peggy A., Young, Nathan P., Gerson-Gurwitz, Adina, Eam, Boreth, Goel, Vikas, Stumpf, Craig R., Chen, Joan, Parker, Gregory S., Fish, Sarah, Barrera, Maria, Sung, Eric, Staunton, Jocelyn, Chiang, Gary G., Webster, Kevin R.
Format: Journal Article
Language:English
Published: 15-08-2020
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutations or amplifications affecting receptor tyrosine kinases (RTKs) activate the RAS/MAPK and PI3K/AKT signaling pathways thereby promoting cancer cell proliferation and survival. Oncoprotein expression is tightly controlled at the level of mRNA translation and is regulated by the eukaryotic translation initiation factor 4F (eIF4F) complex consisting of eIF4A, eIF4E, and eIF4G. eIF4A functions to catalyze the unwinding of secondary structure in the 5'-untranslated region (5'-UTR) of mRNA facilitating ribosome scanning and translation initiation. The activation of oncogenic signaling pathways, including RAS and PI3K, facilitate formation of eIF4F and enhance eIF4A activity promoting the translation of oncogenes with highly structured 5'-UTRs that are required for tumor cell proliferation, survival and metastasis. eFT226 is a selective eIF4A inhibitor that converts eIF4A into a sequence specific translational repressor by increasing the affinity between eIF4A and 5'-UTR polypurine motifs leading to selective downregulation of mRNA translation. The polypurine element is highly enriched in the 5'-UTR of eFT226 target genes, many of which are known oncogenic drivers, including FGFR1,2 and HER2, enabling eFT226 to selectively inhibit dysregulated oncogene expression. Formation of a ternary complex [eIF4A-eFT226-mRNA] blocks ribosome scanning along the 5'-UTR leading to dose dependent inhibition of RTK protein expression. The 5'-UTR sequence dependency of eFT226 translational inhibition was evaluated in cell-based reporter assays demonstrating 10-45-fold greater sensitivity for reporter constructs containing an RTK 5'-UTR compared to a control. In solid tumor cell lines driven by alterations in FGFR1, FGFR2 or HER2, downregulation of RTK expression by eFT226 resulted in decreased MAPK and AKT signaling, potent inhibition of cell proliferation and an induction of apoptosis suggesting that eFT226 could be effective in treating tumor types dependent on these oncogenic drivers. Solid tumor xenograft models harboring FGFR1,2 or HER2 amplifications treated with eFT226 resulted in significant in vivo tumor growth inhibition and regression at well tolerated doses in breast, non-small cell lung and colorectal cancer models. Treatment with eFT226 also decreased RTK protein levels supporting the potential to use these eFT226 target genes as pharmacodynamic markers of target engagement. Further evaluation of predictive markers of sensitivity or resistance showed that RTK tumor models with mTOR mediated activation of eIF4A are most sensitive to eFT226. The association of eFT226 activity in RTK tumor models with mTOR pathway activation provides a means to further enrich for sensitive patient subsets during clinical development. Clinical trials with eFT226 in patients with solid tumor malignancies have initiated. Citation Format: Peggy A. Thompson, Nathan P. Young, Adina Gerson-Gurwitz, Boreth Eam, Vikas Goel, Craig R. Stumpf, Joan Chen, Gregory S. Parker, Sarah Fish, Maria Barrera, Eric Sung, Jocelyn Staunton, Gary G. Chiang, Kevin R. Webster. Preclinical evaluation of eFT226, a potent and selective eIF4A inhibitor with anti-tumor activity in FGFR1,2 and HER2 driven cancers [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3399.
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.AM2020-3399