Self‐Confirming Magnetosomes for Tumor‐Targeted T 1 /T 2 Dual‐Mode MRI and MRI‐Guided Photothermal Therapy
Abstract Nanomaterials as T 1 / T 2 dual‐mode magnetic resonance imaging (MRI) contrast agents have great potential in improving the accuracy of tumor diagnosis. Applications of such materials, however, are limited by the complicated chemical synthesis process and potential biosafety issues. In this...
Saved in:
Published in: | Advanced healthcare materials Vol. 11; no. 14 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
01-07-2022
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Nanomaterials as
T
1
/
T
2
dual‐mode magnetic resonance imaging (MRI) contrast agents have great potential in improving the accuracy of tumor diagnosis. Applications of such materials, however, are limited by the complicated chemical synthesis process and potential biosafety issues. In this study, the biosynthesis of manganese (Mn)‐doped magnetosomes (MagMn) that not only can be used in
T
1
/
T
2
dual‐mode MR imaging with self‐confirmation for tumor detection, but also improve the photothermal conversion efficiency for MRI‐guided photothermal therapy (PTT) is reported. The MagMn nanoparticles (NPs) are naturally produced through the biomineralization of magnetotactic bacteria by doping Mn into the ferromagnetic iron oxide crystals. In vitro and in vivo studies demonstrated that targeting peptides functionalized MagMn enhanced both
T
1
and
T
2
MRI signals in tumor tissue and significantly inhibited tumor growth by the further MRI‐guided PTT. It is envisioned that the biosynthesized multifunctional MagMn nanoplatform may serve as a potential theranostic agent for cancer diagnosis and treatment. |
---|---|
ISSN: | 2192-2640 2192-2659 |
DOI: | 10.1002/adhm.202200841 |