Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment

Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity...

Full description

Saved in:
Bibliographic Details
Published in:PLoS biology Vol. 14; no. 9; p. e1002537
Main Authors: Tamori, Yoichiro, Suzuki, Emiko, Deng, Wu-Min
Format: Journal Article
Language:English
Published: United States Public Library of Science 01-09-2016
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity and trigger tumorigenesis remain elusive. Here, we show through analysis of conserved neoplastic tumor-suppressor genes (nTSGs) in Drosophila wing imaginal disc epithelia that tumor initiation depends on tissue-intrinsic local cytoarchitectures, causing tumors to consistently originate in a specific region of the tissue. In this "tumor hotspot" where cells constitute a network of robust structures on their basal side, nTSG-deficient cells delaminate from the apical side of the epithelium and begin tumorigenic overgrowth by exploiting endogenous Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity. Conversely, in other regions, the "tumor coldspot" nTSG-deficient cells are extruded toward the basal side and undergo apoptosis. When the direction of delamination is reversed through suppression of RhoGEF2, an activator of the Rho family small GTPases, and JAK/STAT is activated ectopically in these coldspot nTSG-deficient cells, tumorigenesis is induced. These data indicate that two independent processes, apical delamination and JAK/STAT activation, are concurrently required for the initiation of nTSG-deficient-induced tumorigenesis. Given the conservation of the epithelial cytoarchitecture, tumorigenesis may be generally initiated from tumor hotspots by a similar mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceptualization: YT WMD. Formal analysis: YT. Funding acquisition: YT ES WMD. Investigation: YT. Methodology: YT ES WMD. Project administration: YT WMD. Resources: YT ES WMD. Supervision: YT WMD. Validation: YT ES WMD. Visualization: YT WMD. Writing - original draft: YT WMD. Writing - review & editing: YT WMD.
The authors have declared that no competing interests exist.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.1002537