The glycosyltransferase repertoire of the spikemoss Selaginella moellendorffii and a comparative study of its cell wall

Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 7; no. 5; p. e35846
Main Authors: Harholt, Jesper, Sørensen, Iben, Fangel, Jonatan, Roberts, Alison, Willats, William G T, Scheller, Henrik Vibe, Petersen, Bent Larsen, Banks, Jo Ann, Ulvskov, Peter
Format: Journal Article
Language:English
Published: United States Public Library of Science 02-05-2012
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Conceived and designed the experiments: PU JH HVS WGTW AR. Performed the experiments: PU JH AR IS JF. Analyzed the data: PU JH HVS WGTW AR IS JAB BLP JF. Contributed reagents/materials/analysis tools: WGTW IS AR HVS JAB JH PU JF. Wrote the paper: PU JH HVS WGTW AR IS JAB BLP JF. Background database: JAB.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0035846