Membrane-permeabilized sonodynamic therapy enhances drug delivery into macrophages

Macrophages play a pivotal role in the formation and development of atherosclerosis as a predominant inflammatory cell type present within atherosclerotic plaque. Promoting anti-atherosclerotic drug delivery into macrophages may provide a therapeutic potential on atherosclerotic plaque. In this stud...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 14; no. 6; p. e0217511
Main Authors: Cao, Zhengyu, Zhang, Tianyi, Sun, Xin, Liu, Mingyu, Shen, Zhaoqian, Li, Bicheng, Zhao, Xuezhu, Jin, Hong, Zhang, Zhiguo, Tian, Ye
Format: Journal Article
Language:English
Published: United States Public Library of Science 10-06-2019
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Macrophages play a pivotal role in the formation and development of atherosclerosis as a predominant inflammatory cell type present within atherosclerotic plaque. Promoting anti-atherosclerotic drug delivery into macrophages may provide a therapeutic potential on atherosclerotic plaque. In this study, we investigated whether membrane-permeabilized sonodynamic therapy (MP-SDT) enhances drug delivery into THP-1 macrophages. Images of confocal microscopy confirmed that the optimal plasma distribution of the sonosensitizer protoporphyrin IX (PpIX) was at 1 hour incubation. The non-lethal parameter of MP-SDT was determined by cell viability as measured by a CCK-8 assay. Bright field microscopy demonstrated plasma membrane deformation in response to MP-SDT. Using SYTOX Green, a model drug for cellular uptake, we found that MP-SDT significantly induced membrane permeabilization dependent on ultrasound intensity and exposure time. Using Fluo-3 AM, intracellular calcium elevation during MP-SDT was confirmed as a result of membrane permeabilization. Membrane perforation of MP-SDT-treated cells was observed by scanning electron microscopy and transmission electron microscopy. Moreover, MP-SDT-induced membrane permeabilization and perforation were remarkably prevented by scavenging reactive oxygen species (ROS) during MP-SDT. Furthermore, we assessed the therapeutic effect of MP-SDT in combination with anti-atherosclerotic drug atorvastatin. Our results showed that MP-SDT increased the therapeutic effect of atorvastatin on lipid-laden THP-1-derived foam cells, including decreasing lipid droplets, increasing the cholesterol efflux and the expression of PPARγ and ABCG1. In conclusion, MP-SDT might become a promising approach to facilitating the delivery of anti-atherosclerotic drugs into macrophages via membrane permeabilization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0217511