Evaluating the relationship between alcohol consumption, tobacco use, and cardiovascular disease: A multivariable Mendelian randomization study

Alcohol consumption and smoking, 2 major risk factors for cardiovascular disease (CVD), often occur together. The objective of this study is to use a wide range of CVD risk factors and outcomes to evaluate potential total and direct causal roles of alcohol and tobacco use on CVD risk factors and eve...

Full description

Saved in:
Bibliographic Details
Published in:PLoS medicine Vol. 17; no. 12; p. e1003410
Main Authors: Rosoff, Daniel B, Davey Smith, George, Mehta, Nehal, Clarke, Toni-Kim, Lohoff, Falk W
Format: Journal Article
Language:English
Published: United States Public Library of Science 04-12-2020
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alcohol consumption and smoking, 2 major risk factors for cardiovascular disease (CVD), often occur together. The objective of this study is to use a wide range of CVD risk factors and outcomes to evaluate potential total and direct causal roles of alcohol and tobacco use on CVD risk factors and events. Using large publicly available genome-wide association studies (GWASs) (results from more than 1.2 million combined study participants) of predominantly European ancestry, we conducted 2-sample single-variable Mendelian randomization (SVMR) and multivariable Mendelian randomization (MVMR) to simultaneously assess the independent impact of alcohol consumption and smoking on a wide range of CVD risk factors and outcomes. Multiple sensitivity analyses, including complementary Mendelian randomization (MR) methods, and secondary alcohol consumption and smoking datasets were used. SVMR showed genetic predisposition for alcohol consumption to be associated with CVD risk factors, including high-density lipoprotein cholesterol (HDL-C) (beta 0.40, 95% confidence interval (CI), 0.04-0.47, P value = 1.72 × 10-28), triglycerides (TRG) (beta -0.23, 95% CI, -0.30, -0.15, P value = 4.69 × 10-10), automated systolic blood pressure (BP) measurement (beta 0.11, 95% CI, 0.03-0.18, P value = 4.72 × 10-3), and automated diastolic BP measurement (beta 0.09, 95% CI, 0.03-0.16, P value = 5.24 × 10-3). Conversely, genetically predicted smoking was associated with increased TRG (beta 0.097, 95% CI, 0.014-0.027, P value = 6.59 × 10-12). Alcohol consumption was also associated with increased myocardial infarction (MI) and coronary heart disease (CHD) risks (MI odds ratio (OR) = 1.24, 95% CI, 1.03-1.50, P value = 0.02; CHD OR = 1.21, 95% CI, 1.01-1.45, P value = 0.04); however, its impact was attenuated in MVMR adjusting for smoking. Conversely, alcohol maintained an association with coronary atherosclerosis (OR 1.02, 95% CI, 1.01-1.03, P value = 5.56 × 10-4). In comparison, after adjusting for alcohol consumption, smoking retained its association with several CVD outcomes including MI (OR = 1.84, 95% CI, 1.43, 2.37, P value = 2.0 × 10-6), CHD (OR = 1.64, 95% CI, 1.28-2.09, P value = 8.07 × 10-5), heart failure (HF) (OR = 1.61, 95% CI, 1.32-1.95, P value = 1.9 × 10-6), and large artery atherosclerosis (OR = 2.4, 95% CI, 1.41-4.07, P value = 0.003). Notably, using the FinnGen cohort data, we were able to replicate the association between smoking and several CVD outcomes including MI (OR = 1.77, 95% CI, 1.10-2.84, P value = 0.02), HF (OR = 1.67, 95% CI, 1.14-2.46, P value = 0.008), and peripheral artery disease (PAD) (OR = 2.35, 95% CI, 1.38-4.01, P value = 0.002). The main limitations of this study include possible bias from unmeasured confounders, inability of summary-level MR to investigate a potentially nonlinear relationship between alcohol consumption and CVD risk, and the generalizability of the UK Biobank (UKB) to other populations. Evaluating the widest range of CVD risk factors and outcomes of any alcohol consumption or smoking MR study to date, we failed to find a cardioprotective impact of genetically predicted alcohol consumption on CVD outcomes. However, alcohol was associated with and increased HDL-C, decreased TRG, and increased BP, which may indicate pathways through impact CVD risk, warranting further study. We found smoking to be a risk factor for many CVDs even after adjusting for alcohol. While future studies incorporating alcohol consumption patterns are necessary, our data suggest causal inference between alcohol, smoking, and CVD risk, further supporting that lifestyle modifications might be able to reduce overall CVD risk.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
I have read the journal's policy and the authors of this manuscript have the following competing interests: GDS is an Academic Editor on PLOS Medicine’s Editorial Board. All other authors declare no potential conflicts of interest.
ISSN:1549-1676
1549-1277
1549-1676
DOI:10.1371/journal.pmed.1003410