Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold

We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, bu...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 9; no. 4; p. e93793
Main Authors: Taylor, Andrew F, Rylott, Elizabeth L, Anderson, Christopher W N, Bruce, Neil C
Format: Journal Article
Language:English
Published: United States Public Library of Science 01-04-2014
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake.
Bibliography:Conceived and designed the experiments: AFT ELR CWNA NCB. Performed the experiments: AFT ELR. Analyzed the data: AFT ELR CWNA NCB. Wrote the paper: ELR CWNA AFT NCB.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0093793