A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes

Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30-40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have b...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 7; no. 8; p. e42222
Main Authors: Liu, Changchun, Mauk, Michael G, Hart, Robert, Bonizzoni, Mariangela, Yan, Guiyun, Bau, Haim H
Format: Journal Article
Language:English
Published: United States Public Library of Science 03-08-2012
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30-40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission. An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark. The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to track the geographical distribution of mosquito populations and community structure alterations due to environmental changes and malaria intervention measures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: CL MGM RH MB GY HHB. Performed the experiments: CL MGM RH. Analyzed the data: CL MGM MB GY HHB. Contributed reagents/materials/analysis tools: MB GY. Wrote the paper: CL MGM MB GY HHB.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0042222